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Abstract. We compute nearly optimal nested sensors configurations for global
polynomial regression on domains with a complex shape, by resorting to the
recent CATCH (Caratheodory-Tchakaloff) subsampling technique (sparse
discrete moment matching via NonNegative Least Squares). For example,
this allows to compress thousands of low-discrepancy sampling points on a
many-sided nonconvex polygon into a small subset of weighted points, keep-
ing the size of the uniform regression error estimates with compression ratios
of 1-2 orders of magnitude. Since the ℓ1-norm of the weights remains constant
by construction, this technique differs substantially from the most popular
compressed sensing methods based on ℓ1-minimization (such as Basis Pur-
suit).
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1. Introduction

Polynomial regression is a commonly used technique in the analysis of sensor
networks data; cf., e.g., [1, 6] and the references therein. In this paper we
survey and extend a recent mathematical tool, named CATCH (Caratheodory-
Tchakaloff) subsampling, for the compression of discrete measures [5, 8, 10,
12] and in particular of discrete polynomial Least Squares [7, 13], by sparse
discrete moment matching. This method allows to select from a huge uniform
discretization of a given region a much smaller number of (weighted) sampling
points, even on a complex shape such as for example a nonconvex polygon
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with many sides, keeping practically invariant the Least Squares approximation
estimates.

The potential applications concern the construction of relatively small sensor
networks, which can capture the approximation power of much larger networks
in recovering scalar or vector fields on complex geometries. Though the frame-
work is that of compressed (or compressive) sensing [3], the technique differs
substantially from the most popular compressed sensing methods. Moreover,
we shall discuss here a new feature of CATCH subsampling, the possibility of
constructing a nested family of sampling sets corresponding to a sequence of
polynomial degrees.

The theoretical base of CATCH subsampling is given by two cornerstones of
cubature theory and convex analysis, that are Tchakaloff theorem on the exis-
tence of low cardinality positive cubature formulas exact on polynomial spaces
[11], whose discrete version can be proved by Caratheodory theorem on finite-
dimensional conic/convex combinations [2].

We begin by stating such a discrete version of Tchakaloff theorem (originally
proved for integration with respect to absolutely continuous measures); cf. [8]
for the literature on generalizations of Tchakaloff theorem.

In the sequel, we shall denote by Pd
n the space of d-variate polynomials with

total degree not exceeding n, and by

N = Nn = dim(Pd
n) =

(
n+ d

d

)
(1)

its dimension.

Theorem 1. Let µ be a multivariate measure whose support is a Pd
n-determining

finite set X = {xi} ⊂ Rd (i.e., n-degree polynomials vanishing there vanish ev-
erywhere), with correspondent positive weights (masses) λ = {λi}, i = 1, . . . ,M ,
M = card(X) > N .

Then, there exist a cubature formula for the discrete measure µ, with nodes
Tn = {tj} ⊂ X and positive weights w = {wj}, 1 ≤ j ≤ m ≤ N , such that∫

X
p(x) dµ =

M∑
i=1

λi p(xi) =

m∑
j=1

wj p(tj) , ∀p ∈ Pd
n . (2)

Given any polynomial basis span(p1, . . . , pN ) = Pd
n, and considering the under-

determined moment system

Au = b = Aλ , A = (Vn(X))t = (pk(xi)) , 1 ≤ k ≤ N , 1 ≤ i ≤ M , (3)

where Vn(X) is a Vandermonde-like matrix and b is the vector of moments of
the polynomial basis with respect to the original discrete measure, the proof
follows from the application of Caratheodory theorem to the columns of A.

Indeed, Caratheodory theorem asserts that there exists a sparse nonnegative
solution u to the system above, whose nonvanishing components (i.e., the weights
{wj}) are at most N and determine the corresponding reduced sampling points
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Tn = {tj}, that we may term the Caratheodory-Tchakaloff (CATCH) points of

X. Technically, we could prove the result even on Pd
n(X) (the polynomial space

restricted to X) whose dimension can be smaller than dim(Pd
n) (for example

when the points lie on an algebraic variety, such as the sphere S2 in R3); for a
discussion on these aspects see, e.g., [8].

2. Caratheodory-Tchakaloff subsampling

The sense of Theorem 1 from an applicative point of view, is that we can
replace the support of a discrete measure by a (much) smaller one (in the ap-
plications typically N ≪ M), if the purpose is to keep invariant the integrals of
polynomials of a given degree (or equivalently to keep invariant the moments of
any polynomial basis); cf. [10], and [5, 12] in a probabilistic framework. An ap-
plication is the compression of high-cardinality cubature formulas, i.e. the case
where the discrete measure is a cubature formula itself, exact on polynomials of
a certain degree, and we replace it by a “smaller” one.

On the other hand, the point of view above gives also an immediate appli-
cation to polynomial regression. Indeed, discrete polynomial Least Squares are
ultimately orthogonal projections of a sampled function on polynomial spaces,
with respect to a discrete measure.

We start from a basic ℓ2-identity. Let X = {x1, . . . , xM} be a discrete sam-
pling set and λ = (λ1, . . . , λM )t a vector of corresponding positive weights. If
card(X) = M > dim(Pd

2n), replacing p by p2 in (2) there are m ≤ dim(Pd
2n)

CATCH points (and weights) such that

∥p∥2ℓ2λ(X) =

M∑
i=1

λi p
2(xi) =

m∑
j=1

wj p
2(tj) = ∥p∥2ℓ2w(T2n)

. (4)

Now, given a continuous function f on a compact region Ω ⊃ X, consider the
weighted Least Squares polynomial Lλ

Xf ∈ Pd
n and the standard error estimate

∥f − Lλ
Xf∥ℓ2(X) = min

p∈Pd
n

∥f − p∥ℓ2λ(X) ≤
√
µ(X) ∥f − p∗n∥∞ , (5)

where p∗n is the polynomial of best uniform approximation to f on Ω, and µ(X) =∑M
i=1 λi. Moreover, consider the weighted Least Squares polynomial Lw

T2n
f ∈ Pd

n

∥f − Lw
T2n

f∥ℓ2w(T2n) = min
p∈Pd

n

∥f − p∥ℓ2w(T2n) . (6)

By (4) and the fact that Lw
T2n

f is an orthogonal projection on Pd
n with respect

to a weighted discrete measure supported at T2n (and thus by Bessel inequal-
ity ∥Lw

T2n
g∥ℓ2w(T2n) ≤ ∥g∥ℓ2w(T2n) for every g defined on T2n), we easily get the

following chain of inequalities

∥f − Lw
T2n

f∥ℓ2λ(X) ≤ ∥f − p∗n∥ℓ2λ(X) + ∥Lw
T2n

(p∗n − f)∥ℓ2λ(X)

= ∥f − p∗n∥ℓ2λ(X) + ∥Lw
T2n

(p∗n − f)∥ℓ2w(T2n) ≤ ∥f − p∗n∥ℓ2λ(X) + ∥p∗n − f∥ℓ2w(T2n)

≤
(√

µ(X) +
√
∥w∥1

)
∥f − p∗n∥∞ , (7)
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and eventually the ℓ2λ(X) error estimate

∥f − Lw
T2n

f∥ℓ2λ(X) ≤ 2
√

µ(X) ∥f − p∗n∥∞ , (8)

since ∥w∥1 =
∑m

j=1wj = µ(X) by the exactness of (2) on the constants.

In the case where λ = (1, 1, . . . , 1)t, we denote by LXf the standard (un-
weighted) Least Squares polynomial on X, and we observe that µ(X) = M =
card(X). Then, we can summarize the estimates above by considering the usual

notion of Root Mean Square Deviation of a prediction f̂ to f at a discrete sam-
pling set X, namely

RMSDX(f̂) = ∥f − f̂∥ℓ2(X)/
√
M , (9)

writing in view of (5) and (8)

RMSDX(LXf) ≤ ∥f − p∗n∥∞ , RMSDX(Lw
T2n

f) ≤ 2∥f − p∗n∥∞ , (10)

which show that the natural estimates of the RMSD at X have essentially the
same size using either the unweighted Least Squares polynomial on X, or the
weighted Least Squares polynomial on the CATCH subset T2n.

In other words, we expect that CATCH subsampling on T2n ⊂ X has an
approximation power for polynomial regression comparable to sampling on the
whole X, with a compression ratio = card(X)/card(T2n) that can be ≫ 1.

2.1. Implementation. We turn now to the implementation of CATCH sub-
sampling, that is computing a sparse solution of the moment system (3). We
stress that in the application to polynomial regression we deal with N = N2n =
dim(Pd

2n), A = (V2n(X))t and λ = (1, 1, . . . , 1)t.
Essentially two approaches have been explored: Linear Programming (LP)

and Quadratic Programming . The first consists in minimizing the linear func-
tional ctu for a suitable choice of the vector c, subject to the constraints (3)
and u ≥ 0. In fact, the solution is a vertex of the polytope defined by the
constraints, which has (at least) M −N null components, cf. e.g. [8, 9, 12].

Observe that a usual choice of compressed sensing (Basis Pursuit, cf. [3]),
i.e. minimizing ∥u∥1 subject to the constraints, is not feasible in the present
context, since ∥u∥1 = µ(X) for any u satisfying (3) by exactness of (2) on the
constants.

Quadratic programming comes into play by solving the NonNegative Least
Squares (NNLS) problem

compute u∗ : ∥Au∗ − b∥2 = min ∥Au− b∥2 , u ≥ 0 , (11)

that can be done by the well-known Lawson-Hanson active set optimization
method [4], which automatically seeks a sparse solution and is implemented for
example by the lsqnonneg native algorithm of Matlab. In practice this gives a
nonzero but very small residual ε = ∥Au∗ − b∥2. Indeed, it is not difficult to
show that the effect of a nonzero residual translates into the substitution of the
factor 2 in the second estimate of (10) with a factor 2 + O

(
ε
√

µ(X)
)
; cf. [8]

for the case λ = (1, 1, . . . , 1)t.
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Our numerical experience has shown that NNLS performs better than LP in
computing the CATCH weights, at least for moderate degrees n (namely, N
in the order of 101 − 102); cf. [7, 8]. In the cubature framework a third more
combinatorial approach, based on a hierarchical SVD and termed “Recursive
Halving Forest”, has been proposed in [12]. It is there claimed that it could be
more suited than Linear Programming on large scale problems (N in the order
of 103−104), due to an experimental average cost of O(N2.6) instead of O(N3.7),
which suggests that such a method could be an alternative also to NNLS and
deserve further studies.

2.2. Nested subsampling. A still unexplored feature of CATCH subsampling,
is the possibility of constructing a nested family of sampling sets, keeping at each
step the approximation power of the original discretization mesh X. We focus
again on polynomial regression. Indeed, given a sequence of degrees n1 < n2 <
· · · < nk, we can compute the nested CATCH sequence {T2nj}

X ⊃ T2nk
⊃ T2nk−1

⊃ · · · ⊃ T2n2 ⊃ T2n1 (12)

together with the corresponding sequence of positive weight vectors, say {w2nj},
by solving backward the sequence of NLLS problems

compute u∗
j−1 : ∥Aju

∗
j−1 − bj∥2 = min ∥Ajuj−1 − bj∥2 , uj−1 ≥ 0 , (13)

for j = k + 1, k, . . . , 2, where Aj = (V2nj−1(T2nj ))
t, bj = Aju

∗
j , and we set

T2nk+1
= X, u∗

k+1 = λ. For example, with λ = (1, 1, . . . , 1)t, we have that the
RMSD estimate (10) is valid with n = nj for every j. We may observe that

when card(X) ≫ dim(Pd
2nk

) the computational bulk is essentially in the first

step, namely the NNLS problem: min ∥(V2nk
(X))tuk − (V2nk

(X))tλ∥2, uk ≥ 0,
since in the other steps the extraction of CATCH points is performed on already
“small” subsets.

In sensors location applications, this hierarchy of nested sampling sets could
be useful for example to compare regression results obtained by different degrees,
or to start from small regression degrees incrementally increasing the number of
activated sensors when necessary. We stress that the whole construction of the
nested sequence of CATCH sampling sets is independent of the specific function
to be sampled, and can be performed once and for all on a given sampling region
as a pre-processing stage.

2.2.1. A numerical example. For the purpose of illustration, in Figure 1 we
plot the CATCH points extracted from a low-discrepancy set on a nonconvex
polygon. Observe that the Compression Ratio (rounded to the nearest integer)
is 243 for degree n = 3, 75 for n = 6 and 36 for n = 9. Moreover, in Table 1 we
report the moment residuals

εnj = ∥(V2nj (T2nj+1))
tu∗

j − (V2nj (X))tλ∥2 , (14)

together with the regression errors

Enj = RMSDX(LXf) , Ecatch
nj

= RMSDX(Lw
T2nj

f) , (15)
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on the sequence of degrees nj = 3j, j = 1, . . . , 5, for the smooth test function

f(x) = f1(x) = exp(−|x− ξ|2) , (16)

and the C2-function

f(x) = f2(x) = |x− ξ|5 , (17)

with x = (x1, x2) and ξ = (0.6, 0.6).
The weighted Least Squares polynomial regression corresponding to CATCH

subsampling has been implemented in Matlab, solving each step of (13) by the
lsqnonneg native algorithm, and then computing (as a solution of an overdeter-
mined system) the coefficient vectors c∗j in the weighted Least Squares problem

compute c∗j : ∥
√
Wj (Bjc

∗
j − fj)∥2 = min ∥

√
Wj (Bjcj − fj)∥2 , (18)

where cj ∈ RNj with Nj = dim(P2
nj
), Bj = Vnj (T2nj ), Wj = diag(w2nj ) is the

diagonal matrix of the CATCH weights and fj = f(T2nj ).
We stress that the RMSD at X remains practically invariant by CATCH

subsampling , which means that we are substantially keeping the approximation
power of polynomial regression on a fine discretization of the domain, using a
much lower number of sampling locations. This feature, together with the nested
structure (12)-(13), makes us confident in the usefulness of CATCH subsampling
to the construction of nearly optimized sensor networks for global polynomial
regression, e.g. in the framework of geospatial analysis.
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Table 1. Compression ratio, moment residual and RMSD at X
on two test functions with different regularity, where X is the
Halton point set of Fig. 1.

deg n1 = 3 n2 = 6 n3 = 9 n4 = 12 n5 = 15
card(T2nj ) 28 91 190 325 496
compr ratio 243 75 36 21 14

res εnj 5.9e-11 3.3e-11 1.7e-11 8.8e-12 2.8e-12
Enj f1 1.2e-03 8.1e-07 3.1e-09 1.0e-12 1.6e-15

Ecatch
nj

f1 1.5e-03 8.8e-07 3.4e-09 1.1e-12 2.1e-15

Enj f2 1.8e-03 2.1e-05 1.8e-06 3.2e-07 9.6e-08
Ecatch

nj
f2 2.2e-03 2.3e-05 1.9e-06 3.3e-07 1.0e-07
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Figure 1. Nested CATCH points for polynomial regression on
a 14-side nonconvex polygon, from 6800 Halton points (dots):
degree n1 = 3 (28 stars), n2 = 6 (91 = 28 stars plus 63 triangles),
n3 = 9 (190 = 28 stars plus 63 triangles plus 99 circles).
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