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Abstract

A general summability method, the so-called 8-summability, is consid-
ered for Gabor series. Under suitable conditions on # we prove that this
summation method of the Gabor expansion of f converges to f in Wiener
amalgam norms, and in particular with respect to L,-norms, for functions
f from the corresponding spaces, as well as almost everywhere. Some in-
equalities for the maximal operator of the #-means of the Gabor expansion
are obtained. The analogous statements for the partial sums of Gabor
series are also given. The classical Hardy-Littlewood inequality and the
Marcinkiewicz multiplier theorem is shown to be valid in the context of
Gabor series.
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1 Introduction

It is known for some well-known summability methods, such as Fejér, Riesz,
Weierstrass, Abel, etc., that the corresponding means o, f of the Fourier series
of f converge to f uniformly as n — oo if f is continuous, and in L, norm if
f € L,y(T?) for some 1 < p < oo (see e.g. Fejér [12], Zygmund [29], Butzer and
Nessel [2], Stein and Weiss [24] or Trigub and Belinsky [25]).

*This research was supported by Lise Meitner fellowship No. T733-N04 and the Hungarian
Scientific Research Funds (OTKA) No T043769.



130 H. G. FEICHTINGER AND F. WEISZ

A general method of summation, the so-called -summation, which is gen-
erated by a single function 6, is intensively studied in the literature (see e.g.
Butzer and Nessel [2], Trigub and Belinsky [25] and Weisz [28] and the ref-
erences therein). If the Fourier transform of 6 is integrable, then the preced-
ing convergence results hold for the #-summation, too (see Butzer and Nessel
[2], Trigub and Belinsky [25] or Feichtinger and Weisz [9]). We proved in [10]
that o, f(x) — f(x) a.e. (more exactly, at each p-Lebesgue point of f) for all
f € Ly(T?), whenever 6 is in the homogeneous Herz space Ep/, 1 <p< oo,
I/p+1/p =1

In this paper we will extend these results to the summation of Gabor expan-
sions Zk,nezd<fv Mg Tokg)MppTory and to Wiener amalgam spaces
W (Ly, £,)(R?), where a, 8 > 0, g,7 € W (Loo, #1)(R?) and M denotes the mod-
ulation operator and 7' the translation operator. Grochenig, Heil and Okoudjou
[17, 18] made use of the Banach space sy, of complex sequences and proved
that the coefficient operator Cy : f +— ((f, MgnTar9))k neze is bounded from
W (Lyp, £,)(R?) to s, 4 and the reconstruction operator R, is bounded from s, ,
to W(Ly,£,)(R?). In the case where p = 0o or ¢ = oo they obtained weak con-
vergence of R,. By taking a closed subspace of W (Ly, /), namely the space
W(Lyp,cp), we will prove strong type results in the endpoint case, too. We need
this result to verify later the uniform convergence of Gabor series.

For ¢ = (Ckn)gnezd € Spq we investigate the -means Ug(’NC of the Gabor
series with coefficients ¢ and get that 0%7 nC = Ryc in W(Ly, £,)(R?) norm as

K,N = 0o (1 < p < o), whenever 6 € L;(R%). If g defines a Gabor frame
G(g,«, ) with dual frame G(v,«, ), then the f-means a%,Nf of the Gabor
expansion of f € W(Ly,£,)(R?) converge to f in norm. Moreover, if f, g, and y
are continuous and p = oo, we obtain uniform convergence.

We will show similar results for the pointwise convergence. If v has com-
pact support and ¢ € s,, then 0¥ yc — R,c a.e., whenever 0 € B, (R%),
I1<r<p<oo, l/r+1/r=1 Ify has no compact support, then the conver-
gence holds for 1 < r < p < oco. If in addition G(g, «, B) is a Gabor frame with
dual frame G(v,a, 8), then 0% xf — f a.e., where f € W(L,,£,)(R?). More-
over, the maximal operator of the f-means of the Gabor expansion is bounded
on W(Ly,£,)(R?). Analogous results are obtained for the partial sums of Ga-
bor series as well. Finally, the Hardy-Littlewood inequality and Marcinkiewicz
multiplier theorem are generalized for Gabor expansions.

2 Wiener amalgam spaces

Let usfixd > 1, d € N. Foraset Y # () let Y¢ be its Cartesian product Yx...xY
taken with itself d-times. For 2 = (z1,...,24) € R? and u = (u1,...,uq) € R?
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set

=1l,...

d
. = a d = a. .
U T ;ukwk n || L Xd|$k|

The ¢, (1 < p < o0) space consists of all complex sequences a = (a)cza for

which y
p
lalle, == (D laxl?) " < oo
kezd

with the usual modification if p = oco. The set of sequences (ay) with the
property limy; o, ax = 0 is denoted by ¢y and it is equipped with the £, norm.

We briefly write L, or L,(R?) instead of L,(R?, \) space equipped with the
norm (or quasi-norm) [|fll, = (Jga [f[? d\)YP (0 < p < o0), where X is the
Lebesgue measure. The space of continuous functions with the supremum norm
is denoted by C(R?) and we will use Cy(IR?) for the space of continuous functions
vanishing at infinity. C.(R?) denotes the space of continuous functions having
compact support.

Translation and modulation of a function f are defined, respectively, by

T.f(t):= f(t—z) and M,f(t) = ™ f(t) (z,w € RY).
For a set H we use the notation T, H := H — x. The Fourier transform of
f € Li(RY) is
Ff(@):=f(a):= [ fl)e ™" dt (v eR?),
Rd

where 1 = /—1.

Let @ and @, denote the cubes
Q=[01% Qu=[0,0* (a>0).
A measurable function f belongs to the Wiener amalgam space W (L, £,)(R?)
(1 <p,g<oo)if
. q Ve a1
Wiz, = (o MFC+RIE o) = (0 1F - Thlally) < oo,
kezd kezd
with the obvious modification for ¢ = oco. It is easy to show that the norm
1/q
1= (2 1F - Tarl,lg) ' < oo
kezd

is an equivalent norm on W (L, £,)(R?). The closed subspace of W (L, £4)(R?)
containing continuous functions is denoted by W (C,£,)(R?) (1 < ¢ < o0).
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W (Lp,co)(R?) is defined analogously (1 < p < oo). The space W (C,£;)(R?)
is called Wiener algebra.
It is easy to see that W (L,,£,)(R?) = L,(R?),

W (Lp,, £g)(R?) = W (Lyp,, £4)(RY)  (p1 < p2)
and

W (Lp, £g,)(R?) = W (Ly, £3,)(RY)  (q1 < o),
(1 < Pp1,P2,41,92 < OO) Thus,

W (Loo, 41)(R?) C Ly(RY) € W (L1, L) (RY) (1 <p < o00).

In this paper the constants C' and C, may vary from line to line and the
constants C), are dependent only on p.

3 Reconstruction and coefficient operators

Given a window g € Lo(R%) and a, 8 > 0, we say that the collection
g(g, Oz,ﬁ) = {M,BnTakg tkyn e Zd}

is a Gabor frame for Ly(R?) if there exist constants A, B > 0 such that

AIFIE < D0 [ MpnTarg)” < BIfI5
k,nezd

for all f € Ly(R?). In this case there exists a dual window v € Lo(R?) such that
G(v,a, B) is also a Gabor frame for Lo(R%) and

F= Y {f, MpnTord) MpnTory = Y {f MpnTor)MpnTarg (1)
k,nezd k,n€zZd

for all f € Lo(R?). This series converges unconditionally in Ly(R?) and the £,
norm of the Gabor coefficients ({f, Mg, Tak7)) is an equivalent norm on Ly(R?).
For more details we refer to Daubechies [4] or Grichenig [16].

Under some stronger condition on ¢g and v, (1) is also valid for other function
spaces. If g,7 is in the Feichtinger’s algebra, then (1) holds for modulation
spaces (see Feichtinger and Zimmermann [11] and Grochenig [16]) and if g,y €
W (Loo, 41), then for L, and amalgam spaces (Grochenig, Heil, and Okoudjou
[17, 18]). In the last case the convergence is conditional; first we sum over n
and then over k. Summing over n in the first sum in (1), we obtain formally the
trigonometric series

mg (:E) = Z (fa MﬂnTakg>627n/Bn.x
nezd
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with period 1/5. Then (1) reads as

f= Z mgToky-

kezd

Let us introduce the space sp, as in Grochenig, Heil, and Okoudjou [18].
The n'" Fourier coefficient of a 1/ periodic function h € L;(Q, /3) is given by

h(n) = B¢ /Q e 28t gy (n € Z9).
1/8

A sequence ¢ = (Cgn)g peza Of complex numbers is in s, 4 (1 < p, g < 00) if there
exist 1/8 periodic functions my € Ly(Q1/5) such that

img(n) = ckn,  k,n ez

and 1/
q
L q
||c||5p,q T ( Z ||mk||LP(Ql/ﬁ)) < %0
kezd

with the usual modification for ¢ = co. Note that the functions my are unique.
If 1 < p < o0, then my can be written as the Fourier series

m(r) = Z Cp ™I
neZzd

in the sense that the rectangular partial sums converge to my in the norm of
Lyp(Qq/p) (cf. Zygmund [29] or Weisz [28]).
The closed subspace sp 40 contains all elements of s, , for which

klggl(3 ||mk||Lp(Q1/ﬁ) =0.

Of course, s, 4 = sp 40 if 1 <p <ooand 1 < g < oo. Similarly, let £, := ¢, if
1 <g<ooand lyp:= cp.

The following two theorems are proved by Grochenig, Heil, and Okoudjou
[17, 18] for Wiener amalgam spaces W (Ly,£,)(R?) if 1 < p,q < oo and by
Balan and Daubechies [1] for W (Lz, £ )(R?). They obtained weak convergence
for p = oo and/or ¢ = oco. For this endpoint case we verify here strong type
theorems.

Theorem 1 Assume that ¥ € W (Lo, £1)(R?) and c € s, for some 1 < p,q <
o0o. Then the reconstruction operator

va = Z kaak'y (2)
kezd
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converges unconditionally in W (Ly, £,)(R?) norm if 1 < ¢ < oo and uncondi-
tionally in the w* topology of W (Ly,lx)(R?) if ¢ = co. If ¢ € $p.so0, then
the convergence holds unconditionally in W (Ly, £)(R%) norm. Moreover, R, is

bounded from spq to W (Lp, £y)(R?) and from sp.0o0 to W (Ly, L) (RY) and
1Byellw iz, < ClVIw (oo llells, o (3)
If g <p andc € spq0, then the sum in (2) converges unconditionally a.e.

Proof. Except the results concerning the space sp, o, o and the a.e. convergence,
Theorem 1 was proved in Grochenig, Heil, and Okoudjou [18] with the help of
the inequality

‘< > kaak7ah>‘
kezd

< CZ Z VT1qq oo lmellz, @, o) 1M T ak+ar1Qq Iy (4)
leZd ke
1/q
< Ollwiatn (2 Imal?.,0) " WBIw(, -
kezd

where h € W(Ly,£,)(R?) and p’ denotes the dual index to p. Note that the
dual space of W (Ly, £y)(R?) is W (L, £y)(R?).

From this inequality we can see the unconditional convergence in
W (Lp, £oo)(RY) norm, too, if ¢ € spo00. Since, for a fixed k € Z4, Tory €
W (Loo, #1)(RY), we have

Ik Lok L, (15) < CSTHS Tar| lmillz, @, 5 =0 as  j— oo,
i

and so mgTury € W (Lp,co)(R?). This implies Ryc € W(Ly,cp)(RY) because
W (Ly, co)(R?) is complete.

For the almost everywhere convergence of the sum in (2) observe that £, — £,
if ¢ < p and so

/ /
(3 Imell o) " < (32 el o) = lell o < .

kezd kezd

Z/ |m,€|pdx/ D ml? dx < 0.

kezd’ Qs Q1/8 pezd

Hence,

This implies that ), ;4 |m|P is a.e. finite and

mg — 0 a.e. as k — 0o. (5)
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Consequently,

[Rye— Y miTory| < D miTary| < V1w (Lo.r) SUP mi] = 0
k|<K |k|>K |k|>K

as K —o00. W

Note that if v has compact support, then the sum in (2) is finite for every
fixed z.

Theorem 2 If g € W(Loo,/1)(R?) and f € W(Ly, £y)(R?) for some 1 < p,q <
oo then the coefficient operator

Cgf = ((f, MﬁnTak9>)k,nEZd
is bounded from W (L, 4)(RY) to sy, and from W (Ly, Lo o)(R?) to sp000 and

1Cofllspg < CNINW (oo e) 1 I (Lp.00)- (6)

Moreover, there exist unique functions my € Ly(Qy/g) which satisfy mg(n) =
Cyf(k,n) for all k,n € 74 and these are given explicitly by

mi(x) =B 1Y (f - Targ)(x — n/B) (7)

nezd

with unconditional convergence in Ly(Q1/)-

Proof. Except the results concerning the space sy 0 and the norm convergence
in (7) for p = oo, the theorem was proved in Gréchenig, Heil, and Okoudjou [18].
The norm convergence in (7) follows from

ImellL, @y, < B4 YN - Tak®) (- = n/B)Lyi@r)

nezd
= /Bid Z ||f'Takg||Lp(Tn/gQ1/5)
nezd
—d
< p Z sup | Targ| |l fllL,(T,,501,/5) (8)
nezd In/sQ1/s
< Oﬁ_dz sup  |Tokg| Il flw(z,.e0)
nezd Tn/8Q1/s

< CB Nglw(rw e F w0

for all 1 < p < co. We must show that if f € W (Ly,c)(R?), then Cyf € sp 000,
Le., limy o0 [[millz,(Q,5) = 0. In this case if n is large enough in (8), say
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[n| > N, then || f|lz, < € and so

Th/5Q1/8)

B> sup Targ Ly 500, < B¢ > sup [Turg]
n|>N Tr/891/5 n|>N Tn/5@
< B Nglw(rwrr)-

On the other hand, if |n] < N in (8), then there exists a number Kj such that

—d
8 Z sup |Tak9|||f||Lp(Tn/ﬁQ1/ﬁ)
inj<n Tn/8Q1/8

<CBUNflwirye) D, sup gl
‘n|<NTak+n/6Ql/B

< CBUfIw(zyeo) Y, suplgl-
lj|>Ky, 9

It is easy to see that K — oo as k — oo and then

Z sup|g| = 0 as k — oo.
ik 9

This means that

—d
B8 Z sup  |Takg| | fllz,(1,,50.,5) <€
inj<n Tn/8Q1/8

if k is large enough; thus, limy_, HmkHLp(Ql/ﬁ) =0. m

The Gabor frame operator is defined formally by

Sg,'yf = Z (faMﬁnTakg>MﬁnTak7-
k,nezd

If we give the meaning S, f := R,Cyf to this definition, then we obtain the
following.

Corollary 1 If g,y € W (Lo, t1)(R?), then S, is bounded on W (L,,£,)(R?)
and on W (Ly, looo)(RY) (1 < p,q < 00), and

1Sgy fllw (Lpe0) < ClINW (Lo ) VN (Loo,e) | F W (L,20)-

The following two results are due to Grochenig, Heil, and Okoudjou [17, 18].
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Theorem 3 If g,7 € W (Loo,?1)(R?) and f € W(Lp, £,)(R?) for some 1 <
p,q < 0o, then the Walnut representation

R,Cof =B G- Tyysf 9)

nezd

holds with absolute convergence in W (Ly, £y)(R?), where

Gn(z) =Y g(w —n/B — ak)y(x - ak). (10)

kezd

Corollary 2 Assume that g,y € W (Lo, £1)(R?) such that G(g, «, B) is a Gabor
frame for Ly(R?) with dual frame G(v,a, B). If f € W(Lp,£,)(R?) for some
1 <p,q < oo, then RyCyf = f and we have the norm equivalence | f|lw(r,.e,) ~
1Cgflspq-

4 Norm convergence of Gabor expansions

It is known that the rectangular partial sums of the multi-dimensional Fourier

series
§ :h(n)GZMBn-x
neZzd

of h € Ly(Q1/8) (1 < p < 00) converge to h in Ly(Q/g) norm (cf. Zygmund
[29] or Weisz [28]). Moreover, according to one of the deepest result in harmonic
analysis, the square partial sums of the Fourier series converge a.e. to h €
Lp(Q1/8) (1 < p < 00) (see Carleson [3], Hunt [20] and, in the more-dimensional
case, Fefferman [7], and also Grafakos [14]), i.e.,

Sxh — h in Ly(Q1/) norm and a.e. as N — oo, (11)

where R
Snh(z) == Y h(n)e’™™ (N €N).
In|<N

Using these theorems, similar convergence results will be proven for Gabor ex-
pansions in this and the next sections.
For c € sp4 (1 <p,q < o0) and v € W(Loo, 1) let

S%K,NC = SK,NC = Z Z Ck,nMﬁnTak'Y (K,N € N)
|k| <K |n|<N

Then Sk c means formally

Skeoc(®) = ) ( > Ck,nem’B"'I>Tak7($)-

|k|<K nezd
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If 1 < p < 00, then, by (11),

SK,o0C = Z my Lok
k| <K

and, as we have seen in Theorem 1, Sk ooc converges to Ryc in W (Ly, £,0)(R?)
norm as K — oo. Grochenig, Heil, and Okoudjou [17, 18] verified that Sk yc —
Ryc in W(Ly, £,)(R?) norm as K,N — oo and 1 < p < 00,1 < ¢ < oo. Obvi-
ously,
Sk.NC= Z (Snmp)Tak- (12)
k|<K

If p = 1, then the results in (11) are not true. However, using a summability
method, say the Fejér’s method, we can extend (11). Summability methods are
used quite often in Fourier analysis. For the theory of summation see e.g. Butzer
and Nessel [2], Trigub and Belinsky [25] and Weisz [28]. The N Fejér mean of
the Fourier series of h € L1(Q;/g) is given by

oxh() =Y (ﬁ(1_%))ﬁ(n)62flﬂn'm (N € N).
In|<N j=1

Then
onh — h in Ly(Q1/) norm and a.e. as N — oo, (13)

whenever 1 < p < co. If h is continuous, then the convergence holds uniformly
(see Marcinkiewicz and Zygmund [23, 29] or Weisz [28]).

We define the Fejér means for Gabor series as well: if ¢ € s, 4 (1 < p,q < 00),
then let

d
.
04, K,NC:= OK NC:= Z Z (H (1 — ]\|7—|J—|1>>Ck’nM’3nTak7'
|k|[<K [n|<N j=1
It is easy to see that
orNc= Y (onmk)Tary- (14)

[k|<K

Instead of Fejér summation, we may take a general summability method, the
so-called f-summability defined by one single function 0. For 8 € W (C, ¢1) the
N §-mean of the Fourier series of h € L;(Q; /8) resp. of the Gabor series of
c € spg (1 <p,qg<o0) are defined by
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and

—-Nn
Uz,K,NC = O'?(’NC = Z Z 0<N—H>Ck7nM5nTak7 (K,N S N)
|k|<K nezd

Observe that these series are absolutely convergent because
[h(n)] <Al ernl < llmelle < llells,
and
o(——)| < (N + )0
Z N1 SV +DY0llw e,y < oo.
nezd

We can see immediately that (14) holds in this case, too, namely

o%,Nc = Z (U?mG)Tak'y. (15)
[k|<K

If = 1;_; yja, then we obtain the partial sums; if 6(z) = H?Zl max (0,1 — |z;|),
then the Fejér means.

In Feichtinger and Weisz [9, 10] we verified the analogous statements to (13)
for f-summability. If 6 € L (R%), then

o%h — 6(0)h in Ly(Q1/3) norm as N — oo (16)

for all h € Ly(Q1/5) (1 < p < o00). If h € C(Qy/3), then the convergence is
uniform (see [9]). The almost everywhere convergence is treated in the next
section.

Now we are ready to prove the norm convergence of Gabor expansions in
amalgam spaces.

Theorem 4 Assume that v € W(Leo,¢1)(R?) and ¢ € s, 4.
(i) If 1l <p < oo andl<q< oo, then

. . d
K}\lfrgoo Sk,ne = Ryc in W(Lyp, £y)(R*) norm.

If ¢ = oo, then the convergence holds in the w* topology of W (L, L) (R?)
and if ¢ € S0, then in W (Ly, ls)(RY) norm.

(ii) If 0 € Li(R?), 1 <p < o0 and 1 < q < oo, then

. 0 . d
K’kfrgoo ox.nc=0(0)Ryc in W(Lp, £y)(R") norm.

If ¢ = oo, then the convergence holds in the w* topology of W (L,, ) (R?)
and if ¢ € $p 00, then in W(Ly, ls)(RY) norm.
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(11i) If0 e Li(RY), p =00, 1 < q < o0, and my, is continuous for all k € 72,
then

0 : d
K%\lf% o nc=0(0)Ryc in W(Loo, £q)(R") norm.

If ¢ = 0o, then the convergence holds in the w* topology of Loo(R?) and if
€ € Soo,00,0, then in Loo(Rd) norm. If in addition vy is continuous as well,
then we obtain convergence in W (C,£,)(R?) norm if 1 < ¢ < oo and in
C(R%) norm if ¢ = oo and c € 560,00,0-

Proof. If ¢ € s, 40, then for all € > 0 we can find Ky = Kj(€) such that
l/q
q
(> It q,,,)  <e
|k|>Ko

with the usual modification for ¢ = co. Using (15) we can write the difference
6(0)Ryc — aﬁ(, y¢ in the following form

H(O)va—a%,Nc = (9( Ryc—0 Z kaak’Y)
|k|<Ko
0) Y mTary— Y, (Ulgvmk)Tak'Y>
|k|<Ko |k|<Ko
+( > (okme) Ty — (Ujavmk)Tak'Y>- (17)
|k|<Ko |k|<K

Applying Theorem 1, the inequality
lo%hllz, e < ClblL, @,y (N €N, 1<p<oo) (18)
and (16) we conclude that

10(0)Ryc — U?{ NC||W (Lpytq,0)

< 0 H T H
< 16(0)] Z Lok, 0
|k|>Ko
N
+ H |k§(( ( )mk UNmk) okY W(Lyp,€q,0)
SA0
-|-H om)T, H
K Z ( N k) ok’ W(Lprlq,O)
o<IkI<K
1/q
< CPOIwmen( X Tl o, )

|k|>Ko

1/q
+ ClAVNW (Lo 1) ( k%{ 16(0)my, — O'NmkHLp Ql/ﬁ)>
<Ko
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/4
+Clwien (D2 lofemil? q,,)
Ko<|k|<K

< Celyllw(ne,n)
if N is sufficiently large and K > Kj, which shows (ii) and (iii) for 1 < ¢ < 00

or g =00 and ¢ € 8,0
To prove the w* convergence for ¢ = oo, let h € W(L, 1) (RY). We get by
(17) that
‘<9(0)R7c - a%,Nc,h>‘ < |9(0)|‘< 3 kaaw,h>‘
|k|> Ko
+ (X (00)ms — ok Tapy, )|
|k|<Ko
+ ‘< Z (Ulgvmk)Tak% h>‘
Ko<|k|<K

The first and third term is small if K is sufficiently large, because of (4) and
(18). We obtain for the second term analogously to (4) that

> (0Ome = ofmi)Tary, b))

k| <Ko
0
< OZ Z 7T011Qallool|0(0)mi — onmillL, @, 5) 1M T ak+a11Qa llp s

lezd ‘k|§K0
), this converges to 0 as N — oco. This proves the w* convergence in

and, by (16), thi
(ii) and (iii). With the help of (11) the statement (i) can be proven similarly.

|
Note that (i) was proved for 1 < g < oo by Grochenig, Heil, and Okoudjou

i
[17, 18]. Let us apply this theorem to ¢ = Cyf. The following notations will be

used:
Sorvinf =Sk nf=Skn(Cof) = D Y (fs ManTokg) MpnTok,
|k|<K |n|<N

= o n(Cyf)

= > 2.0

|k|<K nezd

Ug,y,K,Nf = U%,Nf
) fa Mﬁn akg>M6nTak7

Corollary 3 Assume that g,y € W (Lo, £1)(R?) such that G(g, «, B) is a Gabor
frame for Lo(R?) with dual frame G(vy,a, B). Let f € W (Ly, £,)(RY).
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(i) If 1 <p<ooandl<qg< oo, then

K}\ifrgoo Sknf=1Ff in W (Ly,2,)(RY) norm.

If ¢ = oo, then the convergence holds in the w* topology of W (L,, ) (R?)
and if f € W(Lp,looo) (RY), then in W (Ly, lso) (R?) norm.

(ii) If 0 € Li(R?), 1 <p < o0 and 1 < q < oo, then

. 9 . . d
K}\lfgoo o nf=00)f in W(Lp,£q)(R*) norm.

If ¢ = oo, then the convergence holds in the w* topology of W (L,, ) (R?)
and if f € W(Lp,looo) (RY), then in W (Ly, £so) (R?) norm.

(iii) If § € Li(RY), p =00, 1 < ¢ < o0 and f and g are continuous then

lim o% vf =0(0)f in W(Loo, £4)(R?) norm.
K,N—oo ’

If ¢ = oo, then the convergence holds in the w* topology of Loo(R?) and
if f € Looo(RY), then in Loo(RY) norm. If in addition vy is continuous as
well, then we get convergence in W (C,£,)(R?) norm if 1 < q < oo and in
C(RY) norm if ¢ = oo and f € Co(R?).

Proof. This corollary follows from Theorem 4 and Corollary 2. By (7), if p = 0o
and f and g are continuous, then the functions my, (k € Z%) are continuous, too.
|

Note that Fejér summation of Gabor series for L, spaces was also investigated
in Grafakos and Lennard [15] and Lyubarskii and Seip [22].

All the results of this section can also be proven for rectangular partial sums.
Namely, if we define Sk nc and 0’%7 ~C by

and

0 L —nn1 —MNgq
UK,NC‘_ Z Z ZH(N1+1"Nd‘i‘l)Ck,nM/BnTak’y’
ki=—K; kq=—Kgnezd

(K,N € N¢) then the same theorems hold. In this case under K, N — oo we
mean that K;, N; - oo forall j =1,...,d.
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5 A.e. convergence of Gabor expansions

First, we investigate the a.e. convergence of summations of Fourier series. In
Feichtinger and Weisz [10] we applied the homogeneous Herz spaces in summa-
bility theory. F,(R?) contains all measurable functions f for which

o0

Ifllz, = > 207D f1p ], < oo,

k=—00

where Py := {x : |z| < 2F} \ {x : |z| > 2¥~1}. These spaces are special cases of
the Herz spaces [19] (see also Feichtinger [8], Garcia-Cuerva and Herrero [13]).
It is easy to see that

Li(RY) = By (RY) = E (RY) <> E.(R?) <> E(R?), 1<g<r<oo.
In this way we obtained ([10]) the following result: if § € Ep, (R?), then
o%h — 6(0)h a.e. as N — 0o (19)

for all h € Ly(Qy/p), where 1 < p < oo and 1/p + 1/p’ = 1. Actually, the
convergence holds at every Lebesgue point. Some sufficient conditions for
such that 6 € E,/(R?) and many examples can be found in [10].

These results are generalized for Gabor series as follows.

Theorem 5 Assume that v € Loo(R?) with compact support and c € Sp,q-
(i) If 1l <p < oo andl<q< oo, then

lim Sk nyc= Ryc a.e.
K,N—oo

(ii) If 0 € En(RY), 1 <r<p<oo,1/r+1/r'=1and 1< q< oo, then

li 0 vc=00R e.
K,]%,IEOOUK,NC (0)Ryc a.e

Proof. Taking (17) for a fixed z, we observe that the first and third term on
the right hand side is equal to 0, if Ky is large enough, since y has compact
support. Thus,

6(0)Ryc(z) — o ye(z)| = ‘ > (0(0)mp(z) — ohymi (@) Tary(z)
|k|<Ko
< s Y [0(0)my(z) — ofemi ()|
|k|<Ko

and (19) proves the theorem. m
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Note that s,, ¢ <= Sp,.q if p1 < p2 and sp 4, = 5p g, if @1 < 2.
In order to extend this theorem to functions v € W (Lo, £1)(R?), which lack
compact support, we introduce the mazimal operators S, and ¢ by

Syeci=Sici= sup [Swel, Sppef = S.f = S.(Cyf) = swp_|Sk ]
K,NEN

K,NEN
ol ci=olei= sup |ohel, ol = o0lf = 0l(Cyf) = sup loknll
K,NEN K,NEN

For the trigonometric Fourier series of h € L,(Q1,3) we use analogous notations.
It is known that

1S:hllLy (@1 < Collblliy@ry  (1<p <o) (20)

and

lo?Rll 1, < GpllhllL,( (1<r<p<oo), (21)

Q1/p) (Q1/5)

whenever 6 € E,s (see Carleson [3], Hunt [20], Fefferman [7], Grafakos [14] and
Feichtinger and Weisz [10]). Now we prove similar inequalities for Gabor series.

Theorem 6 Assume that g,y € W (Lo, £1)(RY), ¢ € 5,4 and f € W (Ly, £,)(R?).
(1) If 1 <p < oo and 1 < g < oo, then
1Scllw(r,.e) < CollVIw (o) lellsy g (22)
1Sk fllw(z,.e) < CpHg“W(Lm,ll)“’YHW(LOO,El)“f“W(Lp,lq)- (23)
(ii) If 0 € B (R, 1 <r <p<oo,1/r+1/r'=1and 1< q< oo, then
loZellw (zy.0) < CollVlw (Lo eyl sy (24)
102 Fllw (1,,0) < Collgllw (oo e 1YW (Lo o) 1 1w (2, ) - (25)

Proof. By (15),

ole < 3" (o¥mp) | Taryl.
kezd

Using Theorem (1) and (21), we obtain

0
lovellw, ey < Clvlw(be.o (Zd”U k”Lp Ql/ﬂ)
keZ

Coll VW (s ) ( Z I ’““Lp (@Q1/s) )

kezd

IN

= Golvllw (e enllellsy, o

which proves (24). (25) comes from Theorem 2. The inequalities for S, can be
shown similarly. ®
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By (21) we can see as in (5) that o?m; — 0 a.e. as k — oo, whenever
c € Spg 6 E (R, 1 <r <p<ooand q<p. Using (17) we could verify
Theorem 5 for a general v € W (Lo, #1)(R?) and for 1 < r < p < o0, ¢ < p.
However, the next result is more general.

Theorem 7 Assume that v € W(Leo, £1)(R%) and ¢ € s, 4.
(i) If 1 <p<ooandl<q< oo, then

lim Sk nyc= Ryc a.e.
K,N—o0

(ii) If 0 € Eu(RY), 1 <r <p<oo,1/r+1/r'=1and 1< q< oo, then

0
karg o nc=0(0)Ryc a.e.

Proof. Fix c € 5,4 and set

¢ := limsup |07 k,nCE— 0(0)Rycl.
K,N—oo

For (ii) it is sufficient to show that £ =0 a.e.
Choose ¥, € W (Lo, £1)(R?) with compact support such that

1Y = Ymllw(ho,er) = 0 as m — oo.

By Theorem 5,

0
¢ < hmsup|07KNc—07m7KNc|

K,N—00
+ lim sup |a kNC—O0)R,, |+ [0(0) R, c — 0(0)Ryc|
K,N—c
< o) e 0(0) Ry c]

for all m € N. Taking into account Theorems 1 and 6, we conclude

||Uz—7m,*0||W(Lp,eq) + [10(0) Ry, cllw(z,,0,)
Colly = Ymllw (Loo,enyllellsy 4

1Ellw (L, <
<

for all m € N. Since y,, — v in W (Loo, #1)(R?) norm as m — oo, 1Ellw (L, =0
and so £ =0 a.e. (i) can be shown in an analogous way. =

Corollary 4 Assume that g,y € W (Lo, £1)(R?) such that G(g, «, B) is a Gabor
frame for Lo(R?) with dual frame G(vy,a, B). Let f € W (Ly, £,)(RY).
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(i) If 1 <p<ooandl<q< oo, then

K%\lfm SKNf f a.e.

(ii) If 0 € Bu(RY), 1 <r <p<oo,1/r+1/r'=1and 1< q< oo, then

. ] _
K%EOOUK,NJ‘. =0(0)f a.e.

’

If v has compact support, then this convergence holds for 1 <r < p < co.

6 Hardy-Littlewood inequalities

If p = 2, then by Parseval formula

lellsn., = ( S ( 3 |Ck,n|2>q/2>1/q'

k€zZd nezd

Now Theorem 2 implies

/2\1/
(3 (310 ManTasa)P) ™) = 1Cu s < Ol g )1 2,

keZd nezd

with the obvious modification for ¢ = oco. Of course, if ¢ also equals 2, then
S99 =y and W (Lg, l3) = L. Similarly,
)q/2)1/q

IRy ellw (L,e,) < ClVIIW (Lo 1 (Z(

keZd nezd

We will generalize these inequalities for 1 < p < oo below.
For Fourier series of h € L,(Q/) it is known that

|A(n)[” 1/p
(ngd ((|n1|+1)“‘(|nd|+1))2*p> < CpllhliL,( (Q1/5) (1<p<2)

and

)P vy
“W%@w»fq4g;«mu+n~wmﬂ+nvp> 2 <p <o)

(see Edwards [5], Jawerth and Torchinsky [21] and Weisz [27]).

Theorem 8 Assume that g € W (Lo, £1)(RY) and f € W (Ly, £,)(R?) for some
1<p<2,1<qg<oo. Then

|(f5 Mﬁn Targ) P a/py\1/4
( > ( Z (7| + 1)~ (Jng| + 1))2—p) ) < Cpllgllw (Lo o) 1 1w (2.0,) -

kezd
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Proof. The proof follows from

s MpnTy /P\Y
( Z ( Z ((Jn1| —|—f - (|n:|gil|—p1))2—p)q p)l q

kezZd nezd
<G (X Imell?, )
kezd

= CpHCgf“Sp,q

/a

and from Theorem 2. =
We obtain the next theorem in the same way.

Theorem 9 Assume that v € W (Lo, £1)(R?) and

P q/p\ 1/q
(X (X o= o7) )

kezd nezd

is finite for some 2 <p < oo and 1 < g < oo. Then Ry,c € W(Ly,4,;) and

| Ryellw(z,,e)

|c ,n|p a/p\1/a
< Cp||7||W(Loo,él)< > (Z ((|n1|+1)..]f(|nd| +1))2—p) ) '

keZd nezd

7 Marcinkiewicz multiplier theorem

To avoid some technical difficulties, the theorem will be formulated for the one-
dimensional case only. However, it can be simply generalized for higher dimen-
sions.

For a given multiplier X\ = (A\,,n € Z) where the \;’s are complex numbers,
the multiplier operator is defined for Fourier series by

M)\h Z )\ h 271'7,[371 :L‘
nes

where b € Ly(Q1/5) (1 <p < 00).
The Marcinkiewicz multiplier theorem says that if

2i+1_1
il < C, Y =il <C (i€N), (26)
|n|=2¢
then Myh € Ly(Q,,/3) and
IMabllzy @, < Collbllnyory  (1<p < o0)
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(see Zygmund [29, Vol. II. p. 232], and for the multi-dimensional case Edwards
and Gaudry [6] and Weisz [26]).
For Gabor series let formally

A4Xf = j{: An(faﬂ4ﬁn1hkg>ﬂ4ﬁn7hk7'
k,n€Z

As done before, we take the sum first in n:

MAf(2) = (30 Anlf, M Targ) 2™ ) Topey ().

keZ n€Z

It is easy to see that the operator M) is well defined for f € W(L,,¢,)(R),
l1<p<oo,1<qg< 0.

Theorem 10 Assume that g,y € W (Lo, ?1)(R) and f € W(Ly,£,)(R) for some
l1<p<ooandl<gq<oo. If (26) holds, then Myf € W (Ly,£y)(R) and

IMAflw (Lp,00) < CollVIw (Loo,e) 19N W (oo ) 1 W (2,00)-
Proof. It is easy to see that
Myf = Ry ((MnCoyf (k)i mez ).

Then

N

L/q
IMAflw ey < 0||v||W<Lm,zl>(]C§%||Mmk||;(@w))
S

1/q
Gl (3 el 0,1
€

IA

IA

Cp||7||W(Loo,el)||9||W(Loo,z1)||f||W(Lp,eq),

which finishes the proof of the theorem. m
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