Gabor Analysis on Wiener Amalgams

Hans G. Feichtinger

Faculty of Mathematics, Nuhag, University of Vienna, Nordbergstraße 15 Vienna, A-1090, Austria email: hans.feichtinger@univie.ac.at

Ferenc Weisz*

Department of Numerical Analysis, Eötvös L. University, Pázmány P. sétány 1/C. Budapest, H-1117, Hungary weisz@ludens.elte.hu

Abstract

A general summability method, the so-called θ -summability, is considered for Gabor series. Under suitable conditions on θ we prove that this summation method of the Gabor expansion of f converges to f in Wiener amalgam norms, and in particular with respect to L_p -norms, for functions f from the corresponding spaces, as well as almost everywhere. Some inequalities for the maximal operator of the θ -means of the Gabor expansion are obtained. The analogous statements for the partial sums of Gabor series are also given. The classical Hardy-Littlewood inequality and the Marcinkiewicz multiplier theorem is shown to be valid in the context of Gabor series.

Key words and phrases : Wiener amalgam spaces, Herz spaces, θ -summability, Gabor expansions, Gabor frames, time-frequency analysis, Walnut representation, Hardy-Littlewood inequality, multipliers

2000 AMS Mathematics Subject Classification — Primary 42B08, 42C15, Secondary 42C40, 42A38, 46B15.

1 Introduction

It is known for some well-known summability methods, such as Fejér, Riesz, Weierstrass, Abel, etc., that the corresponding means $\sigma_n f$ of the Fourier series of f converge to f uniformly as $n \to \infty$ if f is continuous, and in L_p norm if $f \in L_p(\mathbb{T}^d)$ for some $1 \leq p < \infty$ (see e.g. Fejér [12], Zygmund [29], Butzer and Nessel [2], Stein and Weiss [24] or Trigub and Belinsky [25]).

^{*}This research was supported by Lise Meitner fellowship No. T733-N04 and the Hungarian Scientific Research Funds (OTKA) No T043769.

A general method of summation, the so-called θ -summation, which is generated by a single function θ , is intensively studied in the literature (see e.g. Butzer and Nessel [2], Trigub and Belinsky [25] and Weisz [28] and the references therein). If the Fourier transform of θ is integrable, then the preceding convergence results hold for the θ -summation, too (see Butzer and Nessel [2], Trigub and Belinsky [25] or Feichtinger and Weisz [9]). We proved in [10] that $\sigma_n f(x) \to f(x)$ a.e. (more exactly, at each *p*-Lebesgue point of *f*) for all $f \in L_p(\mathbb{T}^d)$, whenever $\hat{\theta}$ is in the homogeneous Herz space $\dot{E}_{p'}$, $1 \leq p < \infty$, 1/p + 1/p' = 1.

In this paper we will extend these results to the summation of Gabor expansions $\sum_{k,n\in\mathbb{Z}^d} \langle f, M_{\beta n}T_{\alpha k}g \rangle M_{\beta n}T_{\alpha k}\gamma$ and to Wiener amalgam spaces $W(L_p, \ell_q)(\mathbb{R}^d)$, where $\alpha, \beta > 0, g, \gamma \in W(L_\infty, \ell_1)(\mathbb{R}^d)$ and M denotes the modulation operator and T the translation operator. Gröchenig, Heil and Okoudjou [17, 18] made use of the Banach space $s_{p,q}$ of complex sequences and proved that the coefficient operator $C_g : f \mapsto (\langle f, M_{\beta n}T_{\alpha k}g \rangle)_{k,n\in\mathbb{Z}^d}$ is bounded from $W(L_p, \ell_q)(\mathbb{R}^d)$ to $s_{p,q}$ and the reconstruction operator R_γ is bounded from $s_{p,q}$ to $W(L_p, \ell_q)(\mathbb{R}^d)$. In the case where $p = \infty$ or $q = \infty$ they obtained weak convergence of R_γ . By taking a closed subspace of $W(L_p, \ell_\infty)$, namely the space $W(L_p, c_0)$, we will prove strong type results in the endpoint case, too. We need this result to verify later the uniform convergence of Gabor series.

For $c = (c_{k,n})_{k,n \in \mathbb{Z}^d} \in s_{p,q}$ we investigate the θ -means $\sigma_{K,N}^{\theta} c$ of the Gabor series with coefficients c and get that $\sigma_{K,N}^{\theta} c \to R_{\gamma} c$ in $W(L_p, \ell_q)(\mathbb{R}^d)$ norm as $K, N \to \infty$ $(1 \le p < \infty)$, whenever $\hat{\theta} \in L_1(\mathbb{R}^d)$. If g defines a Gabor frame $\mathcal{G}(g, \alpha, \beta)$ with dual frame $\mathcal{G}(\gamma, \alpha, \beta)$, then the θ -means $\sigma_{K,N}^{\theta} f$ of the Gabor expansion of $f \in W(L_p, \ell_q)(\mathbb{R}^d)$ converge to f in norm. Moreover, if f, g, and γ are continuous and $p = \infty$, we obtain uniform convergence.

We will show similar results for the pointwise convergence. If γ has compact support and $c \in s_{p,q}$ then $\sigma_{K,N}^{\theta} c \to R_{\gamma} c$ a.e., whenever $\hat{\theta} \in \dot{E}_{r'}(\mathbb{R}^d)$, $1 \leq r \leq p < \infty, 1/r + 1/r' = 1$. If γ has no compact support, then the convergence holds for $1 \leq r . If in addition <math>\mathcal{G}(g, \alpha, \beta)$ is a Gabor frame with dual frame $\mathcal{G}(\gamma, \alpha, \beta)$, then $\sigma_{K,N}^{\theta} f \to f$ a.e., where $f \in W(L_p, \ell_q)(\mathbb{R}^d)$. Moreover, the maximal operator of the θ -means of the Gabor expansion is bounded on $W(L_p, \ell_q)(\mathbb{R}^d)$. Analogous results are obtained for the partial sums of Gabor series as well. Finally, the Hardy-Littlewood inequality and Marcinkiewicz multiplier theorem are generalized for Gabor expansions.

2 Wiener amalgam spaces

Let us fix $d \ge 1, d \in \mathbb{N}$. For a set $\mathbb{Y} \neq \emptyset$ let \mathbb{Y}^d be its Cartesian product $\mathbb{Y} \times \ldots \times \mathbb{Y}$ taken with itself d-times. For $x = (x_1, \ldots, x_d) \in \mathbb{R}^d$ and $u = (u_1, \ldots, u_d) \in \mathbb{R}^d$

 set

$$u \cdot x := \sum_{k=1}^{d} u_k x_k$$
 and $|x| := \max_{k=1,...,d} |x_k|.$

The ℓ_p $(1 \leq p \leq \infty)$ space consists of all complex sequences $a = (a_k)_{k \in \mathbb{Z}^d}$ for which

$$||a||_{\ell_p} := \left(\sum_{k \in \mathbb{Z}^d} |a_k|^p\right)^{1/p} < \infty$$

with the usual modification if $p = \infty$. The set of sequences (a_k) with the property $\lim_{|k|\to\infty} a_k = 0$ is denoted by c_0 and it is equipped with the ℓ_{∞} norm.

We briefly write L_p or $L_p(\mathbb{R}^d)$ instead of $L_p(\mathbb{R}^d, \lambda)$ space equipped with the norm (or quasi-norm) $||f||_p := (\int_{\mathbb{R}^d} |f|^p d\lambda)^{1/p}$ ($0), where <math>\lambda$ is the Lebesgue measure. The space of continuous functions with the supremum norm is denoted by $C(\mathbb{R}^d)$ and we will use $C_0(\mathbb{R}^d)$ for the space of continuous functions vanishing at infinity. $C_c(\mathbb{R}^d)$ denotes the space of continuous functions having compact support.

Translation and modulation of a function f are defined, respectively, by

$$T_x f(t) := f(t-x)$$
 and $M_{\omega} f(t) := e^{2\pi i \omega \cdot t} f(t)$ $(x, \omega \in \mathbb{R}^d).$

For a set H we use the notation $T_xH := H - x$. The Fourier transform of $f \in L_1(\mathbb{R}^d)$ is

$$\mathcal{F}f(x) := \hat{f}(x) := \int_{\mathbb{R}^d} f(t) e^{-2\pi i x \cdot t} dt \qquad (x \in \mathbb{R}^d),$$

where $i = \sqrt{-1}$.

Let Q and Q_{α} denote the cubes

$$Q = [0, 1)^d, \qquad Q_\alpha = [0, \alpha)^d \qquad (\alpha > 0).$$

A measurable function f belongs to the Wiener amalgam space $W(L_p, \ell_q)(\mathbb{R}^d)$ $(1 \leq p, q \leq \infty)$ if

$$||f||_{W(L_p,\ell_q)} := \left(\sum_{k \in \mathbb{Z}^d} ||f(\cdot+k)||_{L_p(Q)}^q\right)^{1/q} = \left(\sum_{k \in \mathbb{Z}^d} ||f \cdot T_k \mathbf{1}_Q||_p^q\right)^{1/q} < \infty,$$

with the obvious modification for $q = \infty$. It is easy to show that the norm

$$\|f\| := \Big(\sum_{k \in \mathbb{Z}^d} \|f \cdot T_{\alpha k} \mathbf{1}_{Q_{\alpha}}\|_p^q \Big)^{1/q} < \infty$$

is an equivalent norm on $W(L_p, \ell_q)(\mathbb{R}^d)$. The closed subspace of $W(L_\infty, \ell_q)(\mathbb{R}^d)$ containing continuous functions is denoted by $W(C, \ell_q)(\mathbb{R}^d)$ $(1 \leq q \leq \infty)$. $W(L_p, c_0)(\mathbb{R}^d)$ is defined analogously $(1 \leq p \leq \infty)$. The space $W(C, \ell_1)(\mathbb{R}^d)$ is called *Wiener algebra*.

It is easy to see that $W(L_p, \ell_p)(\mathbb{R}^d) = L_p(\mathbb{R}^d)$,

$$W(L_{p_1}, \ell_q)(\mathbb{R}^d) \longleftrightarrow W(L_{p_2}, \ell_q)(\mathbb{R}^d) \qquad (p_1 \le p_2)$$

and

$$W(L_p, \ell_{q_1})(\mathbb{R}^d) \hookrightarrow W(L_p, \ell_{q_2})(\mathbb{R}^d) \qquad (q_1 \le q_2),$$

 $(1 \le p_1, p_2, q_1, q_2 \le \infty)$. Thus,

$$W(L_{\infty}, \ell_1)(\mathbb{R}^d) \subset L_p(\mathbb{R}^d) \subset W(L_1, \ell_{\infty})(\mathbb{R}^d) \qquad (1 \le p \le \infty).$$

In this paper the constants C and C_p may vary from line to line and the constants C_p are dependent only on p.

3 Reconstruction and coefficient operators

Given a window $g \in L_2(\mathbb{R}^d)$ and $\alpha, \beta > 0$, we say that the collection

$$\mathcal{G}(g,\alpha,\beta) := \{ M_{\beta n} T_{\alpha k} g : k, n \in \mathbb{Z}^d \}$$

is a Gabor frame for $L_2(\mathbb{R}^d)$ if there exist constants A, B > 0 such that

$$A \|f\|_{2}^{2} \leq \sum_{k,n \in \mathbb{Z}^{d}} |\langle f, M_{\beta n} T_{\alpha k} g \rangle|^{2} \leq B \|f\|_{2}^{2}$$

for all $f \in L_2(\mathbb{R}^d)$. In this case there exists a dual window $\gamma \in L_2(\mathbb{R}^d)$ such that $\mathcal{G}(\gamma, \alpha, \beta)$ is also a Gabor frame for $L_2(\mathbb{R}^d)$ and

$$f = \sum_{k,n\in\mathbb{Z}^d} \langle f, M_{\beta n} T_{\alpha k} g \rangle M_{\beta n} T_{\alpha k} \gamma = \sum_{k,n\in\mathbb{Z}^d} \langle f, M_{\beta n} T_{\alpha k} \gamma \rangle M_{\beta n} T_{\alpha k} g \qquad (1)$$

for all $f \in L_2(\mathbb{R}^d)$. This series converges unconditionally in $L_2(\mathbb{R}^d)$ and the ℓ_2 norm of the Gabor coefficients $(\langle f, M_{\beta n} T_{\alpha k} \gamma \rangle)$ is an equivalent norm on $L_2(\mathbb{R}^d)$. For more details we refer to Daubechies [4] or Gröchenig [16].

Under some stronger condition on g and γ , (1) is also valid for other function spaces. If g, γ is in the Feichtinger's algebra, then (1) holds for modulation spaces (see Feichtinger and Zimmermann [11] and Gröchenig [16]) and if $g, \gamma \in$ $W(L_{\infty}, \ell_1)$, then for L_p and amalgam spaces (Gröchenig, Heil, and Okoudjou [17, 18]). In the last case the convergence is conditional; first we sum over nand then over k. Summing over n in the first sum in (1), we obtain formally the trigonometric series

$$m_k(x) = \sum_{n \in \mathbb{Z}^d} \langle f, M_{\beta n} T_{\alpha k} g \rangle e^{2\pi i \beta n \cdot x}$$

with period $1/\beta$. Then (1) reads as

$$f = \sum_{k \in \mathbb{Z}^d} m_k T_{\alpha k} \gamma.$$

Let us introduce the space $s_{p,q}$ as in Gröchenig, Heil, and Okoudjou [18]. The n^{th} Fourier coefficient of a $1/\beta$ periodic function $h \in L_1(Q_{1/\beta})$ is given by

$$\hat{h}(n) := \beta^d \int_{Q_{1/\beta}} h(t) e^{-2\pi i \beta n \cdot t} dt \qquad (n \in \mathbb{Z}^d).$$

A sequence $c = (c_{k,n})_{k,n \in \mathbb{Z}^d}$ of complex numbers is in $s_{p,q}$ $(1 \le p, q \le \infty)$ if there exist $1/\beta$ periodic functions $m_k \in L_p(Q_{1/\beta})$ such that

$$\hat{m}_k(n) = c_{k,n}, \qquad k, n \in \mathbb{Z}^d$$

 and

$$\|c\|_{s_{p,q}} := \Big(\sum_{k \in \mathbb{Z}^d} \|m_k\|_{L_p(Q_{1/\beta})}^q\Big)^{1/q} < \infty$$

with the usual modification for $q = \infty$. Note that the functions m_k are unique. If $1 , then <math>m_k$ can be written as the Fourier series

$$m_k(x) = \sum_{n \in \mathbb{Z}^d} c_{k,n} e^{2\pi i eta n \cdot x}$$

in the sense that the rectangular partial sums converge to m_k in the norm of $L_p(Q_{1/\beta})$ (cf. Zygmund [29] or Weisz [28]).

The closed subspace $s_{p,q,0}$ contains all elements of $s_{p,q}$ for which

$$\lim_{k \to \infty} \|m_k\|_{L_p(Q_{1/\beta})} = 0.$$

Of course, $s_{p,q} = s_{p,q,0}$ if $1 \le p \le \infty$ and $1 \le q < \infty$. Similarly, let $\ell_{q,0} := \ell_q$ if $1 \le q < \infty$ and $\ell_{\infty,0} := c_0$.

The following two theorems are proved by Gröchenig, Heil, and Okoudjou [17, 18] for Wiener amalgam spaces $W(L_p, \ell_q)(\mathbb{R}^d)$ if $1 \leq p, q \leq \infty$ and by Balan and Daubechies [1] for $W(L_2, \ell_\infty)(\mathbb{R}^d)$. They obtained weak convergence for $p = \infty$ and/or $q = \infty$. For this endpoint case we verify here strong type theorems.

Theorem 1 Assume that $\gamma \in W(L_{\infty}, \ell_1)(\mathbb{R}^d)$ and $c \in s_{p,q}$ for some $1 \leq p, q \leq \infty$. Then the reconstruction operator

$$R_{\gamma}c := \sum_{k \in \mathbb{Z}^d} m_k T_{\alpha k} \gamma \tag{2}$$

converges unconditionally in $W(L_p, \ell_q)(\mathbb{R}^d)$ norm if $1 \leq q < \infty$ and unconditionally in the w^* topology of $W(L_p, \ell_\infty)(\mathbb{R}^d)$ if $q = \infty$. If $c \in s_{p,\infty,0}$, then the convergence holds unconditionally in $W(L_p, \ell_\infty)(\mathbb{R}^d)$ norm. Moreover, R_γ is bounded from $s_{p,q}$ to $W(L_p, \ell_q)(\mathbb{R}^d)$ and from $s_{p,\infty,0}$ to $W(L_p, \ell_{\infty,0})(\mathbb{R}^d)$ and

$$||R_{\gamma}c||_{W(L_{p},\ell_{q})} \leq C||\gamma||_{W(L_{\infty},\ell_{1})}||c||_{s_{p,q}}.$$
(3)

If $q \leq p$ and $c \in s_{p,q,0}$, then the sum in (2) converges unconditionally a.e.

Proof. Except the results concerning the space $s_{p,\infty,0}$ and the a.e. convergence, Theorem 1 was proved in Gröchenig, Heil, and Okoudjou [18] with the help of the inequality

$$\begin{aligned} \left| \left\langle \sum_{k \in \mathbb{Z}^d} m_k T_{\alpha k} \gamma, h \right\rangle \right| \\ &\leq C \sum_{l \in \mathbb{Z}^d} \sum_{k \in \mathbb{Z}^d} \|\gamma T_{\alpha l} \mathbf{1}_{Q_\alpha}\|_{\infty} \|m_k\|_{L_p(Q_{1/\beta})} \|h T_{\alpha k + \alpha l} \mathbf{1}_{Q_\alpha}\|_{p'} \tag{4} \\ &\leq C \|\gamma\|_{W(L_{\infty}, \ell_1)} \Big(\sum_{k \in \mathbb{Z}^d} \|m_k\|_{L_p(Q_{1/\beta})}^q \Big)^{1/q} \|h\|_{W(L_{p'}, \ell_{q'})}, \end{aligned}$$

where $h \in W(L_{p'}, \ell_{q'})(\mathbb{R}^d)$ and p' denotes the dual index to p. Note that the dual space of $W(L_p, \ell_q)(\mathbb{R}^d)$ is $W(L_{p'}, \ell_{q'})(\mathbb{R}^d)$.

From this inequality we can see the unconditional convergence in $W(L_p, \ell_{\infty})(\mathbb{R}^d)$ norm, too, if $c \in s_{p,\infty,0}$. Since, for a fixed $k \in \mathbb{Z}^d$, $T_{\alpha k} \gamma \in W(L_{\infty}, \ell_1)(\mathbb{R}^d)$, we have

$$\|m_k T_{\alpha k} \gamma\|_{L_p(T_j Q)} \le C \sup_{T_j Q} |T_{\alpha k} \gamma| \ \|m_k\|_{L_p(Q_{1/\beta})} \to 0 \qquad \text{as} \qquad j \to \infty,$$

and so $m_k T_{\alpha k} \gamma \in W(L_p, c_0)(\mathbb{R}^d)$. This implies $R_{\gamma} c \in W(L_p, c_0)(\mathbb{R}^d)$ because $W(L_p, c_0)(\mathbb{R}^d)$ is complete.

For the almost everywhere convergence of the sum in (2) observe that $\ell_q \hookrightarrow \ell_p$ if $q \leq p$ and so

$$\left(\sum_{k\in\mathbb{Z}^d} \|m_k\|_{L_p(Q_{1/\beta})}^p\right)^{1/p} \le \left(\sum_{k\in\mathbb{Z}^d} \|m_k\|_{L_p(Q_{1/\beta})}^q\right)^{1/q} = \|c\|_{s_{p,q,0}} < \infty.$$

Hence,

$$\sum_{k \in \mathbb{Z}^d} \int_{Q_{1/\beta}} |m_k|^p \, d\lambda = \int_{Q_{1/\beta}} \sum_{k \in \mathbb{Z}^d} |m_k|^p \, d\lambda < \infty.$$

This implies that $\sum_{k \in \mathbb{Z}^d} |m_k|^p$ is a.e. finite and

$$m_k \to 0$$
 a.e. as $k \to \infty$. (5)

Consequently,

$$|R_{\gamma}c - \sum_{|k| \le K} m_k T_{\alpha k} \gamma| \le \sum_{|k| > K} |m_k T_{\alpha k} \gamma| \le ||\gamma||_{W(L_{\infty}, \ell_1)} \sup_{|k| > K} |m_k| \to 0$$

$$K \to \infty. \quad \blacksquare$$

as $K \to \infty$.

Note that if γ has compact support, then the sum in (2) is finite for every fixed x.

Theorem 2 If $g \in W(L_{\infty}, \ell_1)(\mathbb{R}^d)$ and $f \in W(L_p, \ell_q)(\mathbb{R}^d)$ for some $1 \leq p, q \leq$ ∞ then the coefficient operator

$$C_g f := (\langle f, M_{\beta n} T_{\alpha k} g \rangle)_{k,n \in \mathbb{Z}^d}$$

is bounded from $W(L_p, \ell_q)(\mathbb{R}^d)$ to $s_{p,q}$ and from $W(L_p, \ell_{\infty,0})(\mathbb{R}^d)$ to $s_{p,\infty,0}$ and

$$\|C_g f\|_{s_{p,q}} \le C \|g\|_{W(L_{\infty},\ell_1)} \|f\|_{W(L_p,\ell_q)}.$$
(6)

Moreover, there exist unique functions $m_k \in L_p(Q_{1/\beta})$ which satisfy $\hat{m}_k(n) =$ $C_q f(k,n)$ for all $k,n \in \mathbb{Z}^d$ and these are given explicitly by

$$m_k(x) = \beta^{-d} \sum_{n \in \mathbb{Z}^d} (f \cdot T_{\alpha k} \overline{g})(x - n/\beta)$$
(7)

with unconditional convergence in $L_p(Q_{1/\beta})$.

Proof. Except the results concerning the space $s_{p,\infty,0}$ and the norm convergence in (7) for $p = \infty$, the theorem was proved in Gröchenig, Heil, and Okoudjou [18]. The norm convergence in (7) follows from

$$\begin{split} \|m_{k}\|_{L_{p}(Q_{1/\beta})} &\leq \beta^{-d} \sum_{n \in \mathbb{Z}^{d}} \|(f \cdot T_{\alpha k} \overline{g})(\cdot - n/\beta)\|_{L_{p}(Q_{1/\beta})} \\ &= \beta^{-d} \sum_{n \in \mathbb{Z}^{d}} \|f \cdot T_{\alpha k} g\|_{L_{p}(T_{n/\beta}Q_{1/\beta})} \\ &\leq \beta^{-d} \sum_{n \in \mathbb{Z}^{d}} \sup_{T_{n/\beta}Q_{1/\beta}} |T_{\alpha k} g| \|f\|_{L_{p}(T_{n/\beta}Q_{1/\beta})} \\ &\leq C\beta^{-d} \sum_{n \in \mathbb{Z}^{d}} \sup_{T_{n/\beta}Q_{1/\beta}} |T_{\alpha k} g| \|f\|_{W(L_{p},\ell_{q})} \\ &\leq C\beta^{-d} \|g\|_{W(L_{\infty},\ell_{1})} \|\|f\|_{W(L_{p},\ell_{q})} \end{split}$$
(8)

for all $1 \leq p \leq \infty$. We must show that if $f \in W(L_p, c_0)(\mathbb{R}^d)$, then $C_g f \in s_{p,\infty,0}$, i.e., $\lim_{k\to\infty} \|m_k\|_{L_p(Q_{1/\beta})} = 0$. In this case if n is large enough in (8), say $|n| \ge N$, then $||f||_{L_p(T_{n/\beta}Q_{1/\beta})} < \epsilon$ and so

$$\begin{split} \beta^{-d} \sum_{|n| \ge N} \sup_{T_{n/\beta}Q_{1/\beta}} |T_{\alpha k}g| \|f\|_{L_p(T_{n/\beta}Q_{1/\beta})} &\leq \epsilon \beta^{-d} \sum_{|n| \ge N} \sup_{T_{n/\beta}Q} |T_{\alpha k}g| \\ &\leq \epsilon \beta^{-d} \|g\|_{W(L_{\infty},\ell_1)}. \end{split}$$

On the other hand, if |n| < N in (8), then there exists a number K_k such that

$$\beta^{-d} \sum_{|n| < N} \sup_{T_{n/\beta}Q_{1/\beta}} |T_{\alpha_k}g| ||f||_{L_p(T_{n/\beta}Q_{1/\beta})} \\ \leq C\beta^{-d} ||f||_{W(L_p,c_0)} \sum_{|n| < N} \sup_{T_{\alpha k + n/\beta}Q_{1/\beta}} |g| \\ \leq C\beta^{-d} ||f||_{W(L_p,c_0)} \sum_{|j| \ge K_k} \sup_{T_jQ} |g|.$$

It is easy to see that $K_k \to \infty$ as $k \to \infty$ and then

$$\sum_{|j| \ge K_k} \sup_{T_j Q} |g| \to 0 \quad \text{as} \quad k \to \infty.$$

This means that

$$\beta^{-d} \sum_{|n| < N} \sup_{T_{n/\beta}Q_{1/\beta}} |T_{\alpha k}g| \|f\|_{L_p(T_{n/\beta}Q_{1/\beta})} < \epsilon$$

if k is large enough; thus, $\lim_{k\to\infty} \|m_k\|_{L_p(Q_{1/\beta})} = 0.$

The *Gabor frame operator* is defined formally by

$$S_{g,\gamma}f := \sum_{k,n\in\mathbb{Z}^d} \langle f, M_{\beta n}T_{\alpha k}g
angle M_{\beta n}T_{\alpha k}\gamma.$$

If we give the meaning $S_{g,\gamma}f := R_{\gamma}C_gf$ to this definition, then we obtain the following.

Corollary 1 If $g, \gamma \in W(L_{\infty}, \ell_1)(\mathbb{R}^d)$, then $S_{g,\gamma}$ is bounded on $W(L_p, \ell_q)(\mathbb{R}^d)$ and on $W(L_p, \ell_{\infty,0})(\mathbb{R}^d)$ $(1 \leq p, q \leq \infty)$, and

$$\|S_{g,\gamma}f\|_{W(L_p,\ell_q)} \le C \|g\|_{W(L_\infty,\ell_1)} \|\gamma\|_{W(L_\infty,\ell_1)} \|f\|_{W(L_p,\ell_q)}.$$

The following two results are due to Gröchenig, Heil, and Okoudjou [17, 18].

Theorem 3 If $g, \gamma \in W(L_{\infty}, \ell_1)(\mathbb{R}^d)$ and $f \in W(L_p, \ell_q)(\mathbb{R}^d)$ for some $1 \leq p, q \leq \infty$, then the Walnut representation

$$R_{\gamma}C_{g}f = \beta^{-d} \sum_{n \in \mathbb{Z}^{d}} G_{n} \cdot T_{n/\beta}f$$
(9)

holds with absolute convergence in $W(L_p, \ell_q)(\mathbb{R}^d)$, where

$$G_n(x) := \sum_{k \in \mathbb{Z}^d} \overline{g(x - n/\beta - \alpha k)} \gamma(x - \alpha k).$$
(10)

Corollary 2 Assume that $g, \gamma \in W(L_{\infty}, \ell_1)(\mathbb{R}^d)$ such that $\mathcal{G}(g, \alpha, \beta)$ is a Gabor frame for $L_2(\mathbb{R}^d)$ with dual frame $\mathcal{G}(\gamma, \alpha, \beta)$. If $f \in W(L_p, \ell_q)(\mathbb{R}^d)$ for some $1 \leq p, q \leq \infty$, then $R_{\gamma}C_g f = f$ and we have the norm equivalence $||f||_{W(L_p, \ell_q)} \sim ||C_g f||_{s_{p,q}}$.

4 Norm convergence of Gabor expansions

It is known that the rectangular partial sums of the multi-dimensional Fourier series

$$\sum_{n\in\mathbb{Z}^d} \hat{h}(n) e^{2\pi\imath\beta n\cdot x}$$

of $h \in L_p(Q_{1/\beta})$ (1 converge to <math>h in $L_p(Q_{1/\beta})$ norm (cf. Zygmund [29] or Weisz [28]). Moreover, according to one of the deepest result in harmonic analysis, the square partial sums of the Fourier series converge a.e. to $h \in$ $L_p(Q_{1/\beta})$ (1 (see Carleson [3], Hunt [20] and, in the more-dimensionalcase, Fefferman [7], and also Grafakos [14]), i.e.,

$$S_N h \to h$$
 in $L_p(Q_{1/\beta})$ norm and a.e. as $N \to \infty$, (11)

where

$$S_N h(x) := \sum_{|n| \le N} \hat{h}(n) e^{2\pi i \beta n \cdot x} \qquad (N \in \mathbb{N}).$$

Using these theorems, similar convergence results will be proven for Gabor expansions in this and the next sections.

For $c \in s_{p,q}$ $(1 \leq p, q \leq \infty)$ and $\gamma \in W(L_{\infty}, \ell_1)$ let

$$S_{\gamma,K,N}c := S_{K,N}c := \sum_{|k| \le K} \sum_{|n| \le N} c_{k,n} M_{\beta n} T_{\alpha k} \gamma \qquad (K, N \in \mathbb{N}).$$

Then $S_{K,\infty}c$ means formally

$$S_{K,\infty}c(x) = \sum_{|k| \le K} \left(\sum_{n \in \mathbb{Z}^d} c_{k,n} e^{2\pi i \beta n \cdot x}\right) T_{\alpha k} \gamma(x).$$

If 1 , then, by (11),

$$S_{K,\infty}c = \sum_{|k| \le K} m_k T_{\alpha k} \gamma$$

and, as we have seen in Theorem 1, $S_{K,\infty}c$ converges to R_gc in $W(L_p, \ell_{q,0})(\mathbb{R}^d)$ norm as $K \to \infty$. Gröchenig, Heil, and Okoudjou [17, 18] verified that $S_{K,N}c \to R_gc$ in $W(L_p, \ell_q)(\mathbb{R}^d)$ norm as $K, N \to \infty$ and 1 . Obviously,

$$S_{K,N}c = \sum_{|k| \le K} (S_N m_k) T_{\alpha k} \gamma.$$
(12)

If p = 1, then the results in (11) are not true. However, using a summability method, say the Fejér's method, we can extend (11). Summability methods are used quite often in Fourier analysis. For the theory of summation see e.g. Butzer and Nessel [2], Trigub and Belinsky [25] and Weisz [28]. The N^{th} Fejér mean of the Fourier series of $h \in L_1(Q_{1/\beta})$ is given by

$$\sigma_N h(x) := \sum_{|n| \le N} \Big(\prod_{j=1}^d \Big(1 - \frac{|n_j|}{N+1} \Big) \Big) \hat{h}(n) e^{2\pi i \beta n \cdot x} \qquad (N \in \mathbb{N}).$$

Then

 $\sigma_N h \to h$ in $L_p(Q_{1/\beta})$ norm and a.e. as $N \to \infty$, (13)

whenever $1 \le p < \infty$. If h is continuous, then the convergence holds uniformly (see Marcinkiewicz and Zygmund [23, 29] or Weisz [28]).

We define the Fejér means for Gabor series as well: if $c \in s_{p,q}$ $(1 \leq p, q \leq \infty)$, then let

$$\sigma_{\gamma,K,N}c := \sigma_{K,N}c := \sum_{|k| \le K} \sum_{|n| \le N} \left(\prod_{j=1}^d \left(1 - \frac{|n_j|}{N+1} \right) \right) c_{k,n} M_{\beta n} T_{\alpha k} \gamma.$$

It is easy to see that

$$\sigma_{K,N}c = \sum_{|k| \le K} (\sigma_N m_k) T_{\alpha k} \gamma.$$
(14)

Instead of Fejér summation, we may take a general summability method, the so-called θ -summability defined by one single function θ . For $\theta \in W(C, \ell_1)$ the N^{th} θ -mean of the Fourier series of $h \in L_1(Q_{1/\beta})$ resp. of the Gabor series of $c \in s_{p,q}$ $(1 \leq p, q \leq \infty)$ are defined by

$$\sigma_N^{\theta} h(x) := \sum_{n \in \mathbb{Z}^d} \theta \Big(\frac{-n}{N+1} \Big) \hat{h}(n) e^{2\pi i \beta n \cdot x}$$

and

$$\sigma_{\gamma,K,N}^{\theta}c := \sigma_{K,N}^{\theta}c := \sum_{|k| \le K} \sum_{n \in \mathbb{Z}^d} \theta\left(\frac{-n}{N+1}\right) c_{k,n} M_{\beta n} T_{\alpha k} \gamma \qquad (K, N \in \mathbb{N}).$$

Observe that these series are absolutely convergent because

$$|\hat{h}(n)| \le ||h||_1, \qquad |c_{k,n}| \le ||m_k||_1 \le ||c||_{s_{p,q}}$$

 and

$$\sum_{n\in\mathbb{Z}^d} \left| \theta\left(\frac{-n}{N+1}\right) \right| \le (N+1)^d \|\theta\|_{W(C,\ell_1)} < \infty.$$

We can see immediately that (14) holds in this case, too, namely

$$\sigma_{K,N}^{\theta}c = \sum_{|k| \le K} (\sigma_N^{\theta} m_k) T_{\alpha k} \gamma.$$
(15)

If $\theta = \mathbf{1}_{[-1,1]^d}$, then we obtain the partial sums; if $\theta(x) = \prod_{j=1}^d \max(0, 1 - |x_j|)$, then the Fejér means.

In Feichtinger and Weisz [9, 10] we verified the analogous statements to (13) for θ -summability. If $\hat{\theta} \in L_1(\mathbb{R}^d)$, then

$$\sigma_N^{\theta} h \to \theta(0)h$$
 in $L_p(Q_{1/\beta})$ norm as $N \to \infty$ (16)

for all $h \in L_p(Q_{1/\beta})$ $(1 \le p < \infty)$. If $h \in C(Q_{1/\beta})$, then the convergence is uniform (see [9]). The almost everywhere convergence is treated in the next section.

Now we are ready to prove the norm convergence of Gabor expansions in amalgam spaces.

Theorem 4 Assume that $\gamma \in W(L_{\infty}, \ell_1)(\mathbb{R}^d)$ and $c \in s_{p,q}$.

(i) If $1 and <math>1 \le q < \infty$, then

$$\lim_{K,N\to\infty} S_{K,N}c = R_{\gamma}c \qquad in \ W(L_p,\ell_q)(\mathbb{R}^d) \ norm.$$

If $q = \infty$, then the convergence holds in the w^* topology of $W(L_p, \ell_\infty)(\mathbb{R}^d)$ and if $c \in s_{p,\infty,0}$, then in $W(L_p, \ell_\infty)(\mathbb{R}^d)$ norm.

(ii) If $\hat{\theta} \in L_1(\mathbb{R}^d)$, $1 \le p < \infty$ and $1 \le q < \infty$, then

$$\lim_{K,N\to\infty}\sigma_{K,N}^{\theta}c=\theta(0)R_{\gamma}c \qquad in \ W(L_p,\ell_q)(\mathbb{R}^d) \ norm.$$

If $q = \infty$, then the convergence holds in the w^* topology of $W(L_p, \ell_\infty)(\mathbb{R}^d)$ and if $c \in s_{p,\infty,0}$, then in $W(L_p, \ell_\infty)(\mathbb{R}^d)$ norm. (iii) If $\hat{\theta} \in L_1(\mathbb{R}^d)$, $p = \infty$, $1 \le q < \infty$, and m_k is continuous for all $k \in \mathbb{Z}^d$, then

$$\lim_{K,N\to\infty}\sigma_{K,N}^{\theta}c=\theta(0)R_{\gamma}c \qquad in \ W(L_{\infty},\ell_q)(\mathbb{R}^d) \ norm.$$

If $q = \infty$, then the convergence holds in the w^* topology of $L_{\infty}(\mathbb{R}^d)$ and if $c \in s_{\infty,\infty,0}$, then in $L_{\infty}(\mathbb{R}^d)$ norm. If in addition γ is continuous as well, then we obtain convergence in $W(C, \ell_q)(\mathbb{R}^d)$ norm if $1 \leq q < \infty$ and in $C(\mathbb{R}^d)$ norm if $q = \infty$ and $c \in s_{\infty,\infty,0}$.

Proof. If $c \in s_{p,q,0}$, then for all $\epsilon > 0$ we can find $K_0 = K_0(\epsilon)$ such that

$$\Big(\sum_{|k|>K_0} \|m_k\|_{L_p(Q_{1/\beta})}^q\Big)^{1/q} < \epsilon$$

with the usual modification for $q = \infty$. Using (15) we can write the difference $\theta(0)R_{\gamma}c - \sigma_{K,N}^{\theta}c$ in the following form

$$\theta(0)R_{\gamma}c - \sigma_{K,N}^{\theta}c = \left(\theta(0)R_{\gamma}c - \theta(0)\sum_{|k| \le K_{0}} m_{k}T_{\alpha k}\gamma\right) \\ + \left(\theta(0)\sum_{|k| \le K_{0}} m_{k}T_{\alpha k}\gamma - \sum_{|k| \le K_{0}} (\sigma_{N}^{\theta}m_{k})T_{\alpha k}\gamma\right) \\ + \left(\sum_{|k| \le K_{0}} (\sigma_{N}^{\theta}m_{k})T_{\alpha k}\gamma - \sum_{|k| \le K} (\sigma_{N}^{\theta}m_{k})T_{\alpha k}\gamma\right).$$
(17)

Applying Theorem 1, the inequality

$$\|\sigma_N^{\theta}h\|_{L_p(Q_{1/\beta})} \le C \|h\|_{L_p(Q_{1/\beta})} \qquad (N \in \mathbb{N}^d, 1 \le p \le \infty)$$
(18)

and (16) we conclude that

$$\begin{split} \|\theta(0)R_{\gamma}c - \sigma_{K,N}^{\theta}c\|_{W(L_{p},\ell_{q,0})} \\ &\leq \|\theta(0)\| \left\| \sum_{|k|>K_{0}} m_{k}T_{\alpha k}\gamma \right\|_{W(L_{p},\ell_{q,0})} \\ &+ \left\| \sum_{|k|\leq K_{0}} (\theta(0)m_{k} - \sigma_{N}^{\theta}m_{k})T_{\alpha k}\gamma \right\|_{W(L_{p},\ell_{q,0})} \\ &+ \left\| \sum_{K_{0}<|k|\leq K} (\sigma_{N}^{\theta}m_{k})T_{\alpha k}\gamma \right\|_{W(L_{p},\ell_{q,0})} \\ &\leq C\|\theta(0)\|\|\gamma\|_{W(L_{\infty},\ell_{1})} \Big(\sum_{|k|\leq K_{0}} \|m_{k}\|_{L_{p}(Q_{1/\beta})}^{q} \Big)^{1/q} \\ &+ C\|\gamma\|_{W(L_{\infty},\ell_{1})} \Big(\sum_{|k|\leq K_{0}} \|\theta(0)m_{k} - \sigma_{N}^{\theta}m_{k}\|_{L_{p}(Q_{1/\beta})}^{q} \Big)^{1/q} \end{split}$$

140

$$+ C \|\gamma\|_{W(L_{\infty},\ell_{1})} \Big(\sum_{K_{0} < |k| \le K} \|\sigma_{N}^{\theta} m_{k}\|_{L_{p}(Q_{1/\beta})}^{q} \Big)^{1/q} \\ \le C \epsilon \|\gamma\|_{W(L_{\infty},\ell_{1})},$$

if N is sufficiently large and $K > K_0$, which shows (ii) and (iii) for $1 \le q < \infty$ or $q = \infty$ and $c \in s_{p,\infty,0}$.

To prove the w^* convergence for $q = \infty$, let $h \in W(L_{p'}, \ell_1)(\mathbb{R}^d)$. We get by (17) that

$$\begin{split} \left| \left\langle \theta(0) R_{\gamma} c - \sigma_{K,N}^{\theta} c, h \right\rangle \right| &\leq |\theta(0)| \left| \left\langle \sum_{|k| > K_{0}} m_{k} T_{\alpha k} \gamma, h \right\rangle \right| \\ &+ \left| \left\langle \sum_{|k| \leq K_{0}} (\theta(0) m_{k} - \sigma_{N}^{\theta} m_{k}) T_{\alpha k} \gamma, h \right\rangle \right| \\ &+ \left| \left\langle \sum_{K_{0} < |k| \leq K} (\sigma_{N}^{\theta} m_{k}) T_{\alpha k} \gamma, h \right\rangle \right|. \end{split}$$

The first and third term is small if K_0 is sufficiently large, because of (4) and (18). We obtain for the second term analogously to (4) that

$$\begin{split} \left| \left\langle \sum_{|k| \le K_0} (\theta(0)m_k - \sigma_N^{\theta}m_k) T_{\alpha k} \gamma, h \right\rangle \right| \\ \le C \sum_{l \in \mathbb{Z}^d} \sum_{|k| \le K_0} \|\gamma T_{\alpha l} \mathbf{1}_{Q_{\alpha}}\|_{\infty} \|\theta(0)m_k - \sigma_N^{\theta}m_k\|_{L_p(Q_{1/\beta})} \|h T_{\alpha k + \alpha l} \mathbf{1}_{Q_{\alpha}}\|_{p'} \end{split}$$

and, by (16), this converges to 0 as $N \to \infty$. This proves the w^* convergence in (ii) and (iii). With the help of (11) the statement (i) can be proven similarly.

Note that (i) was proved for $1 \leq q < \infty$ by Gröchenig, Heil, and Okoudjou [17, 18]. Let us apply this theorem to $c = C_g f$. The following notations will be used:

$$S_{g,\gamma,K,N}f := S_{K,N}f := S_{K,N}(C_g f) = \sum_{|k| \le K} \sum_{|n| \le N} \langle f, M_{\beta n} T_{\alpha k} g \rangle M_{\beta n} T_{\alpha k} \gamma,$$

$$\sigma_{g,\gamma,K,N}^{\theta} f := \sigma_{K,N}^{\theta} f := \sigma_{K,N}^{\theta} (C_g f)$$
$$= \sum_{|k| \le K} \sum_{n \in \mathbb{Z}^d} \theta \left(\frac{-n}{N+1} \right) \langle f, M_{\beta n} T_{\alpha k} g \rangle M_{\beta n} T_{\alpha k} \gamma.$$

Corollary 3 Assume that $g, \gamma \in W(L_{\infty}, \ell_1)(\mathbb{R}^d)$ such that $\mathcal{G}(g, \alpha, \beta)$ is a Gabor frame for $L_2(\mathbb{R}^d)$ with dual frame $\mathcal{G}(\gamma, \alpha, \beta)$. Let $f \in W(L_p, \ell_q)(\mathbb{R}^d)$.

(i) If $1 and <math>1 \le q < \infty$, then

$$\lim_{K,N\to\infty} S_{K,N}f = f \qquad in \ W(L_p,\ell_q)(\mathbb{R}^d) \ norm.$$

If $q = \infty$, then the convergence holds in the w^* topology of $W(L_p, \ell_\infty)(\mathbb{R}^d)$ and if $f \in W(L_p, \ell_{\infty,0})(\mathbb{R}^d)$, then in $W(L_p, \ell_\infty)(\mathbb{R}^d)$ norm.

(ii) If $\hat{\theta} \in L_1(\mathbb{R}^d)$, $1 \leq p < \infty$ and $1 \leq q < \infty$, then

$$\lim_{K,N\to\infty}\sigma_{K,N}^{\theta}f=\theta(0)f \qquad in \ W(L_p,\ell_q)(\mathbb{R}^d) \ norm.$$

If $q = \infty$, then the convergence holds in the w^* topology of $W(L_p, \ell_\infty)(\mathbb{R}^d)$ and if $f \in W(L_p, \ell_{\infty,0})(\mathbb{R}^d)$, then in $W(L_p, \ell_\infty)(\mathbb{R}^d)$ norm.

(iii) If $\hat{\theta} \in L_1(\mathbb{R}^d)$, $p = \infty$, $1 \le q < \infty$ and f and g are continuous then

$$\lim_{K,N\to\infty}\sigma_{K,N}^{\theta}f=\theta(0)f \qquad in \ W(L_{\infty},\ell_{q})(\mathbb{R}^{d}) \ norm.$$

If $q = \infty$, then the convergence holds in the w^* topology of $L_{\infty}(\mathbb{R}^d)$ and if $f \in L_{\infty,0}(\mathbb{R}^d)$, then in $L_{\infty}(\mathbb{R}^d)$ norm. If in addition γ is continuous as well, then we get convergence in $W(C, \ell_q)(\mathbb{R}^d)$ norm if $1 \leq q < \infty$ and in $C(\mathbb{R}^d)$ norm if $q = \infty$ and $f \in C_0(\mathbb{R}^d)$.

Proof. This corollary follows from Theorem 4 and Corollary 2. By (7), if $p = \infty$ and f and g are continuous, then the functions m_k ($k \in \mathbb{Z}^d$) are continuous, too.

Note that Fejér summation of Gabor series for L_p spaces was also investigated in Grafakos and Lennard [15] and Lyubarskii and Seip [22].

All the results of this section can also be proven for rectangular partial sums. Namely, if we define $S_{K,N}c$ and $\sigma_{K,N}^{\theta}c$ by

$$S_{K,N}c := \sum_{k_1 = -K_1}^{K_1} \dots \sum_{k_d = -K_d}^{K_d} \sum_{n_1 = -N_1}^{N_1} \dots \sum_{n_d = -N_d}^{N_d} c_{k,n} M_{\beta n} T_{\alpha k} \gamma$$

and

$$\sigma_{K,N}^{\theta}c := \sum_{k_1=-K_1}^{K_1} \dots \sum_{k_d=-K_d}^{K_d} \sum_{n \in \mathbb{Z}^d} \theta\left(\frac{-n_1}{N_1+1}, \dots, \frac{-n_d}{N_d+1}\right) c_{k,n} M_{\beta n} T_{\alpha k} \gamma,$$

 $(K, N \in \mathbb{N}^d)$ then the same theorems hold. In this case under $K, N \to \infty$ we mean that $K_j, N_j \to \infty$ for all $j = 1, \ldots, d$.

5 A.e. convergence of Gabor expansions

First, we investigate the a.e. convergence of summations of Fourier series. In Feichtinger and Weisz [10] we applied the homogeneous Herz spaces in summability theory. $\dot{E}_q(\mathbb{R}^d)$ contains all measurable functions f for which

$$\|f\|_{\dot{E}_q} := \sum_{k=-\infty}^{\infty} 2^{kd(1-1/q)} \|f\mathbf{1}_{P_k}\|_q < \infty,$$

where $P_k := \{x : |x| < 2^k\} \setminus \{x : |x| \ge 2^{k-1}\}$. These spaces are special cases of the Herz spaces [19] (see also Feichtinger [8], Garcia-Cuerva and Herrero [13]). It is easy to see that

$$L_1(\mathbb{R}^d) = \dot{E}_1(\mathbb{R}^d) \longleftrightarrow \dot{E}_q(\mathbb{R}^d) \longleftrightarrow \dot{E}_r(\mathbb{R}^d) \longleftrightarrow \dot{E}_\infty(\mathbb{R}^d), \qquad 1 < q < r < \infty.$$

In this way we obtained ([10]) the following result: if $\hat{\theta} \in E_{p'}(\mathbb{R}^d)$, then

$$\sigma_N^{\theta} h \to \theta(0) h$$
 a.e. as $N \to \infty$ (19)

for all $h \in L_p(Q_{1/\beta})$, where $1 \leq p < \infty$ and 1/p + 1/p' = 1. Actually, the convergence holds at every Lebesgue point. Some sufficient conditions for θ such that $\hat{\theta} \in \dot{E}_{r'}(\mathbb{R}^d)$ and many examples can be found in [10].

These results are generalized for Gabor series as follows.

Theorem 5 Assume that $\gamma \in L_{\infty}(\mathbb{R}^d)$ with compact support and $c \in s_{p,q}$.

(i) If $1 and <math>1 \le q \le \infty$, then $\lim_{K,N\to\infty} S_{K,N}c = R_{\gamma}c \qquad a.e.$ (ii) If $\hat{\theta} \in \dot{E}_{r'}(\mathbb{R}^d)$, $1 \le r \le p < \infty$, 1/r + 1/r' = 1 and $1 \le q \le \infty$, then $\lim_{K,N\to\infty} \sigma_{K,N}^{\theta}c = \theta(0)R_{\gamma}c \qquad a.e.$

Proof. Taking (17) for a fixed x, we observe that the first and third term on the right hand side is equal to 0, if K_0 is large enough, since γ has compact support. Thus,

$$\begin{aligned} |\theta(0)R_{\gamma}c(x) - \sigma_{K,N}^{\theta}c(x)| &= \Big|\sum_{|k| \le K_0} (\theta(0)m_k(x) - \sigma_N^{\theta}m_k(x))T_{\alpha k}\gamma(x) \\ &\le \|\gamma\|_{\infty}\sum_{|k| \le K_0} |\theta(0)m_k(x) - \sigma_N^{\theta}m_k(x)| \end{aligned}$$

and (19) proves the theorem.

Note that $s_{p_1,q} \leftarrow s_{p_2,q}$ if $p_1 \leq p_2$ and $s_{p,q_1} \hookrightarrow s_{p,q_2}$ if $q_1 \leq q_2$.

In order to extend this theorem to functions $\gamma \in W(L_{\infty}, \ell_1)(\mathbb{R}^d)$, which lack compact support, we introduce the *maximal operators* S_* and σ_*^{θ} by

$$\begin{split} S_{\gamma,*}c &:= S_*c := \sup_{K,N\in\mathbb{N}} |S_{K,N}c|, \quad S_{g,\gamma,*}f := S_*f := S_*(C_gf) := \sup_{K,N\in\mathbb{N}} |S_{K,N}f|, \\ \sigma_{\gamma,*}^{\theta}c &:= \sigma_*^{\theta}c := \sup_{K,N\in\mathbb{N}} |\sigma_{K,N}^{\theta}c|, \quad \sigma_{g,\gamma,*}^{\theta} := \sigma_*^{\theta}f := \sigma_*^{\theta}(C_gf) := \sup_{K,N\in\mathbb{N}} |\sigma_{K,N}^{\theta}f|. \end{split}$$

For the trigonometric Fourier series of $h \in L_p(Q_{1/\beta})$ we use analogous notations. It is known that

$$\|S_*h\|_{L_p(Q_{1/\beta})} \le C_p \|h\|_{L_p(Q_{1/\beta})} \qquad (1
(20)$$

and

$$\|\sigma_*^{\theta}h\|_{L_p(Q_{1/\beta})} \le C_p \|h\|_{L_p(Q_{1/\beta})} \qquad (1 \le r
(21)$$

whenever $\hat{\theta} \in \dot{E}_{r'}$ (see Carleson [3], Hunt [20], Fefferman [7], Grafakos [14] and Feichtinger and Weisz [10]). Now we prove similar inequalities for Gabor series.

Theorem 6 Assume that $g, \gamma \in W(L_{\infty}, \ell_1)(\mathbb{R}^d)$, $c \in s_{p,q}$ and $f \in W(L_p, \ell_q)(\mathbb{R}^d)$. (i) If $1 and <math>1 \le q \le \infty$, then

$$||S_*c||_{W(L_p,\ell_q)} \le C_p ||\gamma||_{W(L_\infty,\ell_1)} ||c||_{s_{p,q}},$$
(22)

$$\|S_*f\|_{W(L_p,\ell_q)} \le C_p \|g\|_{W(L_\infty,\ell_1)} \|\gamma\|_{W(L_\infty,\ell_1)} \|f\|_{W(L_p,\ell_q)}.$$
 (23)

(ii) If $\hat{\theta} \in \dot{E}_{r'}(\mathbb{R}^d)$, $1 \le r , <math>1/r + 1/r' = 1$ and $1 \le q \le \infty$, then

$$\|\sigma_*^{\theta} c\|_{W(L_p,\ell_q)} \le C_p \|\gamma\|_{W(L_{\infty},\ell_1)} \|c\|_{s_{p,q}},$$
(24)

$$\|\sigma_*^{\theta}f\|_{W(L_p,\ell_q)} \le C_p \|g\|_{W(L_{\infty},\ell_1)} \|\gamma\|_{W(L_{\infty},\ell_1)} \|f\|_{W(L_p,\ell_q)}.$$
 (25)

Proof. By (15),

$$\sigma^{ heta}_* c \leq \sum_{k \in \mathbb{Z}^d} (\sigma^{ heta}_* m_k) |T_{lpha k} \gamma|.$$

Using Theorem (1) and (21), we obtain

$$\begin{aligned} \|\sigma_*^{\theta} c\|_{W(L_p,\ell_q)} &\leq C \|\gamma\|_{W(L_{\infty},\ell_1)} \Big(\sum_{k\in\mathbb{Z}^d} \|\sigma_*^{\theta} m_k\|_{L_p(Q_{1/\beta})}^q \Big)^{1/q} \\ &\leq C_p \|\gamma\|_{W(L_{\infty},\ell_1)} \Big(\sum_{k\in\mathbb{Z}^d} \|m_k\|_{L_p(Q_{1/\beta})}^q \Big)^{1/q} \\ &= C_p \|\gamma\|_{W(L_{\infty},\ell_1)} \|c\|_{s_{p,q}}, \end{aligned}$$

which proves (24). (25) comes from Theorem 2. The inequalities for S_* can be shown similarly.

By (21) we can see as in (5) that $\sigma_*^{\theta} m_k \to 0$ a.e. as $k \to \infty$, whenever $c \in s_{p,q}, \hat{\theta} \in \dot{E}_{r'}(\mathbb{R}^d), 1 \leq r and <math>q \leq p$. Using (17) we could verify Theorem 5 for a general $\gamma \in W(L_{\infty}, \ell_1)(\mathbb{R}^d)$ and for $1 \leq r . However, the next result is more general.$

Theorem 7 Assume that $\gamma \in W(L_{\infty}, \ell_1)(\mathbb{R}^d)$ and $c \in s_{p,q}$.

(i) If $1 and <math>1 \le q \le \infty$, then

$$\lim_{K,N\to\infty}S_{K,N}c=R_{\gamma}c\qquad a.e.$$

(ii) If $\hat{\theta} \in \dot{E}_{r'}(\mathbb{R}^d)$, $1 \le r , <math>1/r + 1/r' = 1$ and $1 \le q \le \infty$, then $\lim_{K,N \to \infty} \sigma_{K,N}^{\theta} c = \theta(0) R_{\gamma} c \qquad a.e.$

Proof. Fix $c \in s_{p,q}$ and set

$$\xi := \limsup_{K,N o \infty} |\sigma^{ heta}_{\gamma,K,N} c - heta(0) R_{\gamma} c|.$$

For (ii) it is sufficient to show that $\xi = 0$ a.e.

Choose $\gamma_m \in W(L_{\infty}, \ell_1)(\mathbb{R}^d)$ with compact support such that

$$\|\gamma - \gamma_m\|_{W(L_{\infty},\ell_1)} \to 0 \quad \text{as} \quad m \to \infty.$$

By Theorem 5,

$$\begin{split} \xi &\leq \lim_{K,N\to\infty} \sup_{\substack{K,N\to\infty}} |\sigma_{\gamma,K,N}^{\theta}c - \sigma_{\gamma_m,K,N}^{\theta}c| \\ &+ \lim_{K,N\to\infty} \sup_{\substack{K,N\to\infty}} |\sigma_{\gamma_m,K,N}^{\theta}c - \theta(0)R_{\gamma_m}c| + |\theta(0)R_{\gamma_m}c - \theta(0)R_{\gamma}c| \\ &\leq \sigma_{\gamma-\gamma_m,*}^{\theta}c + |\theta(0)R_{\gamma-\gamma_m}c| \end{split}$$

for all $m \in \mathbb{N}$. Taking into account Theorems 1 and 6, we conclude

$$\begin{aligned} \|\xi\|_{W(L_p,\ell_q)} &\leq \|\sigma_{\gamma-\gamma_m,*}^{\theta}c\|_{W(L_p,\ell_q)} + \|\theta(0)R_{\gamma-\gamma_m}c\|_{W(L_p,\ell_q)} \\ &\leq C_p \|\gamma-\gamma_m\|_{W(L_\infty,\ell_1)} \|c\|_{s_{p,q}} \end{aligned}$$

for all $m \in \mathbb{N}$. Since $\gamma_m \to \gamma$ in $W(L_{\infty}, \ell_1)(\mathbb{R}^d)$ norm as $m \to \infty$, $\|\xi\|_{W(L_p, \ell_q)} = 0$ and so $\xi = 0$ a.e. (i) can be shown in an analogous way.

Corollary 4 Assume that $g, \gamma \in W(L_{\infty}, \ell_1)(\mathbb{R}^d)$ such that $\mathcal{G}(g, \alpha, \beta)$ is a Gabor frame for $L_2(\mathbb{R}^d)$ with dual frame $\mathcal{G}(\gamma, \alpha, \beta)$. Let $f \in W(L_p, \ell_q)(\mathbb{R}^d)$.

(i) If $1 and <math>1 \le q \le \infty$, then

$$\lim_{K,N\to\infty}S_{K,N}f=f\qquad a.e.$$

(ii) If $\hat{\theta} \in \dot{E}_{r'}(\mathbb{R}^d)$, $1 \le r , <math>1/r + 1/r' = 1$ and $1 \le q \le \infty$, then $\lim_{K,N \to \infty} \sigma_{K,N}^{\theta} f = \theta(0) f \qquad a.e.$

If γ has compact support, then this convergence holds for $1 \leq r \leq p < \infty$.

6 Hardy-Littlewood inequalities

If p = 2, then by Parseval formula

$$||c||_{s_{2,q}} = \Big(\sum_{k \in \mathbb{Z}^d} \Big(\sum_{n \in \mathbb{Z}^d} |c_{k,n}|^2\Big)^{q/2}\Big)^{1/q}.$$

Now Theorem 2 implies

$$\Big(\sum_{k\in\mathbb{Z}^d}\Big(\sum_{n\in\mathbb{Z}^d}|\langle f, M_{\beta n}T_{\alpha k}g\rangle|^2\Big)^{q/2}\Big)^{1/q} = \|C_gf\|_{s_{2,q}} \le C\|g\|_{W(L_{\infty},\ell_1)}\|f\|_{W(L_2,\ell_q)}$$

with the obvious modification for $q = \infty$. Of course, if q also equals 2, then $s_{2,2} = \ell_2$ and $W(L_2, \ell_2) = L_2$. Similarly,

$$||R_{\gamma}c||_{W(L_{2},\ell_{q})} \leq C ||\gamma||_{W(L_{\infty},\ell_{1})} \Big(\sum_{k\in\mathbb{Z}^{d}} \Big(\sum_{n\in\mathbb{Z}^{d}} |c_{k,n}|^{2}\Big)^{q/2}\Big)^{1/q}.$$

We will generalize these inequalities for 1 below.

For Fourier series of $h \in L_p(Q_{1/\beta})$ it is known that

$$\left(\sum_{n \in \mathbb{Z}^d} \frac{|\hat{h}(n)|^p}{((|n_1|+1)\cdots(|n_d|+1))^{2-p}}\right)^{1/p} \le C_p \|h\|_{L_p(Q_{1/\beta})} \qquad (1$$

 and

$$\|h\|_{L_p(Q_{1/\beta})} \le C_p \Big(\sum_{n \in \mathbb{Z}^d} \frac{|\hat{h}(n)|^p}{((|n_1|+1)\cdots(|n_d|+1))^{2-p}}\Big)^{1/p} \qquad (2 \le p < \infty)$$

(see Edwards [5], Jawerth and Torchinsky [21] and Weisz [27]).

Theorem 8 Assume that $g \in W(L_{\infty}, \ell_1)(\mathbb{R}^d)$ and $f \in W(L_p, \ell_q)(\mathbb{R}^d)$ for some 1 . Then

$$\Big(\sum_{k\in\mathbb{Z}^d}\Big(\sum_{n\in\mathbb{Z}^d}\frac{|\langle f, M_{\beta n}T_{\alpha k}g\rangle|^p}{((|n_1|+1)\cdots(|n_d|+1))^{2-p}}\Big)^{q/p}\Big)^{1/q} \le C_p \|g\|_{W(L_{\infty},\ell_1)} \|f\|_{W(L_p,\ell_q)}$$

Proof. The proof follows from

$$\left(\sum_{k\in\mathbb{Z}^{d}}\left(\sum_{n\in\mathbb{Z}^{d}}\frac{|\langle f, M_{\beta n}T_{\alpha k}g\rangle|^{p}}{((|n_{1}|+1)\cdots(|n_{d}|+1))^{2-p}}\right)^{q/p}\right)^{1/q} \leq C_{p}\left(\sum_{k\in\mathbb{Z}^{d}}\|m_{k}\|_{L_{p}(Q_{1/\beta})}^{q}\right)^{1/q} = C_{p}\|C_{g}f\|_{s_{p,q}}$$

and from Theorem 2. \blacksquare

We obtain the next theorem in the same way.

Theorem 9 Assume that $\gamma \in W(L_{\infty}, \ell_1)(\mathbb{R}^d)$ and

$$\Big(\sum_{k\in\mathbb{Z}^d}\Big(\sum_{n\in\mathbb{Z}^d}\frac{|c_{k,n}|^p}{((|n_1|+1)\cdots(|n_d|+1))^{2-p}}\Big)^{q/p}\Big)^{1/q}$$

is finite for some $2 \leq p < \infty$ and $1 \leq q \leq \infty$. Then $R_{\gamma}c \in W(L_p, \ell_q)$ and

$$\|R_{\gamma}c\|_{W(L_{p},\ell_{q})} \leq C_{p}\|\gamma\|_{W(L_{\infty},\ell_{1})} \Big(\sum_{k\in\mathbb{Z}^{d}}\Big(\sum_{n\in\mathbb{Z}^{d}}\frac{|c_{k,n}|^{p}}{((|n_{1}|+1)\cdots(|n_{d}|+1))^{2-p}}\Big)^{q/p}\Big)^{1/q}$$

7 Marcinkiewicz multiplier theorem

To avoid some technical difficulties, the theorem will be formulated for the onedimensional case only. However, it can be simply generalized for higher dimensions.

For a given multiplier $\lambda = (\lambda_n, n \in \mathbb{Z})$ where the λ_j 's are complex numbers, the multiplier operator is defined for Fourier series by

$$M_{\lambda}h(x) := \sum_{n \in \mathbb{Z}} \lambda_n \hat{h}(n) e^{2\pi i \beta n \cdot x},$$

where $h \in L_p(Q_{1/\beta})$ (1 .

The Marcinkiewicz multiplier theorem says that if

$$|\lambda_i| \le C, \qquad \sum_{|n|=2^i}^{2^{i+1}-1} |\lambda_n - \lambda_{n+1}| \le C \qquad (i \in \mathbb{N}), \tag{26}$$

then $M_{\lambda}h \in L_p(Q_{1/\beta})$ and

$$|M_{\lambda}h||_{L_p(Q_{1/\beta})} \le C_p ||h||_{L_p(Q_{1/\beta})} \qquad (1$$

(see Zygmund [29, Vol. II. p. 232], and for the multi-dimensional case Edwards and Gaudry [6] and Weisz [26]).

For Gabor series let formally

$$M_{\lambda}f = \sum_{k,n\in\mathbb{Z}}\lambda_n\langle f,M_{eta n}T_{lpha k}g
angle M_{eta n}T_{lpha k}\gamma.$$

As done before, we take the sum first in n:

$$M_{\lambda}f(x) := \sum_{k \in \mathbb{Z}} \Big(\sum_{n \in \mathbb{Z}} \lambda_n \langle f, M_{\beta n} T_{\alpha k} g \rangle e^{2\pi i \beta n \cdot x} \Big) T_{\alpha k} \gamma(x).$$

It is easy to see that the operator M_{λ} is well defined for $f \in W(L_p, \ell_q)(\mathbb{R})$, 1 .

Theorem 10 Assume that $g, \gamma \in W(L_{\infty}, \ell_1)(\mathbb{R})$ and $f \in W(L_p, \ell_q)(\mathbb{R})$ for some $1 and <math>1 \le q \le \infty$. If (26) holds, then $M_{\lambda}f \in W(L_p, \ell_q)(\mathbb{R})$ and

$$\|M_{\lambda}f\|_{W(L_{p},\ell_{q})} \leq C_{p}\|\gamma\|_{W(L_{\infty},\ell_{1})}\|g\|_{W(L_{\infty},\ell_{1})}\|f\|_{W(L_{p},\ell_{q})}.$$

Proof. It is easy to see that

$$M_{\lambda}f = R_{\gamma}\Big((\lambda_n C_g f(k,n))_{k,n\in\mathbb{Z}}\Big).$$

Then

$$\begin{split} \|M_{\lambda}f\|_{W(L_{p},\ell_{q})} &\leq C \|\gamma\|_{W(L_{\infty},\ell_{1})} \Big(\sum_{k\in\mathbb{Z}} \|M_{\lambda}m_{k}\|_{L_{p}(Q_{1/\beta})}^{q} \Big)^{1/q} \\ &\leq C_{p} \|\gamma\|_{W(L_{\infty},\ell_{1})} \Big(\sum_{k\in\mathbb{Z}} \|m_{k}\|_{L_{p}(Q_{1/\beta})}^{q} \Big)^{1/q} \\ &\leq C_{p} \|\gamma\|_{W(L_{\infty},\ell_{1})} \|g\|_{W(L_{\infty},\ell_{1})} \|f\|_{W(L_{p},\ell_{q})}, \end{split}$$

which finishes the proof of the theorem. $\hfill\blacksquare$

References

- R. Balan and I. Daubechies, Optimal stochastic encoding and approximation schemes using Weyl-Heisenberg sets. In H. G. Feichtinger and T. Strohmer, editors, *Advances in Gabor Analysis*, Applied and Numerical Harmonic Analysis, 259–320, Birkhäuser, Boston, 2002.
- [2] P. L. Butzer and R. J. Nessel, *Fourier Analysis and Approximation*, Birkhäuser, Basel, 1971.

- [3] L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math., 116, 135–157, 1966.
- [4] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.
- [5] R. E. Edwards, Fourier Series, A Modern Introduction, volume 2, Springer, Berlin, 1982.
- [6] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and Multiplier Theory, volume 90 of Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer, Berlin, 1977.
- [7] C. Fefferman, On the convergence of multiple Fourier series. Bull. Amer. Math. Soc., 77, 744-745, 1971.
- [8] H. G. Feichtinger, An elementary approach to Wiener's third Tauberian theorem for the Euclidean n-space. In Symposia Math., volume XXIX of Analisa Armonica, 267–301, Cortona, 1988.
- [9] H. G. Feichtinger and F. Weisz, The Segal algebra $\mathbf{S}_0(\mathbb{R}^d)$ and norm summability of Fourier series and Fourier transforms, *Monatshefte Math.*, **148**, 333–349, 2006.
- [10] H. G. Feichtinger and F. Weisz, Wiener amalgams and pointwise summability of Fourier transforms and Fourier series, *Math. Proc. Camb. Phil. Soc.*, 140, 509–536, 2006.
- [11] H. G. Feichtinger and G. Zimmermann, A Banach space of test functions for Gabor analysis. In H. G. Feichtinger and T. Strohmer, editors, *Gabor Analysis and Algorithms. Theory and Applications*, Applied and Numerical Harmonic Analysis, Ch. 3, 123–170, Birkhäuser, Boston, 1998.
- [12] L. Fejér, Untersuchungen über Fouriersche Reihen, Math. Annalen, 58, 51-69, 1904.
- [13] J. Garcia-Cuerva and M.-J. L. Herrero, A theory of Hardy spaces associated to the Herz spaces, Proc. London Math. Soc., 69, 605–628, 1994.
- [14] L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, New Jersey, 2004.
- [15] L. Grafakos and C. Lennard, Characterization of $L^p(\mathbf{R}^n)$ using Gabor frames, J. Fourier Anal. Appl., 7, 101–126, 2001.
- [16] K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001.

- [17] K. Gröchenig and C. Heil, Gabor meets Littlewood–Paley: Gabor expansions in $L^p(\mathbf{R}^d)$, Studia Math., 146, 15–33, 2001.
- [18] K. Gröchenig, C. Heil and K. Okoudjou, Gabor analysis in weighted amalgam spaces, Sampl. Theory Signal Image Process., 1, 225–259, 2002.
- [19] C. Herz, Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transforms, J. Math. Mech., 18, 283–324, 1968.
- [20] R. A. Hunt, On the convergence of Fourier series. In Orthogonal Expansions and their Continuous Analogues, Proc. Conf. Edwardsville, Ill., 1967, 235– 255, Illinois Univ. Press, Carbondale, 1968.
- [21] B. Jawerth and A. Torchinsky, A note on real interpolation of Hardy spaces in the polydisk, Proc. Amer. Math. Soc., 96, 227–232, 1986.
- [22] Y. Lyubarskii and K. Seip, Convergence and summability of Gabor expansions at the Nyquist density, J. Fourier Anal. Appl., 5, 127–157, 1999.
- [23] J. Marcinkiewicz and A. Zygmund, On the summability of double Fourier series, Fund. Math., 32, 122–132, 1939.
- [24] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, 1971.
- [25] R. M. Trigub and E. S. Belinsky, Fourier Analysis and Approximation of Functions, Kluwer Academic Publishers, Dordrecht, Boston, London, 2004.
- [26] F. Weisz, Strong summability of two-dimensional trigonometric-Fourier series, Annales Univ. Sci. Budapest Eötvös, Sect. Comp., 16, 391–406, 1996.
- [27] F. Weisz, Two-parameter Hardy-Littlewood inequalities, Studia Math., 118, 175–184, 1996.
- [28] F. Weisz, Summability of Multi-dimensional Fourier Series and Hardy Spaces, Kluwer Academic Publishers, Dordrecht, Boston, London, 2002.
- [29] A. Zygmund, *Trigonometric Series*, 3rd edition, Cambridge Press, London, 2002.