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Abstract

A general summability method, the so-called �-summability, is consid-
ered for Gabor series. Under suitable conditions on � we prove that this
summation method of the Gabor expansion of f converges to f in Wiener
amalgam norms, and in particular with respect to Lp-norms, for functions
f from the corresponding spaces, as well as almost everywhere. Some in-
equalities for the maximal operator of the �-means of the Gabor expansion
are obtained. The analogous statements for the partial sums of Gabor
series are also given. The classical Hardy-Littlewood inequality and the
Marcinkiewicz multiplier theorem is shown to be valid in the context of
Gabor series.
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1 Introduction

It is known for some well-known summability methods, such as Fej�er, Riesz,
Weierstrass, Abel, etc., that the corresponding means �nf of the Fourier series
of f converge to f uniformly as n ! 1 if f is continuous, and in Lp norm if
f 2 Lp(Td) for some 1 � p < 1 (see e.g. Fej�er [12], Zygmund [29], Butzer and
Nessel [2], Stein and Weiss [24] or Trigub and Belinsky [25]).

�This research was supported by Lise Meitner fellowship No. T733-N04 and the Hungarian
Scienti�c Research Funds (OTKA) No T043769.
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A general method of summation, the so-called �-summation, which is gen-
erated by a single function �, is intensively studied in the literature (see e.g.
Butzer and Nessel [2], Trigub and Belinsky [25] and Weisz [28] and the ref-
erences therein). If the Fourier transform of � is integrable, then the preced-
ing convergence results hold for the �-summation, too (see Butzer and Nessel
[2], Trigub and Belinsky [25] or Feichtinger and Weisz [9]). We proved in [10]
that �nf(x) ! f(x) a.e. (more exactly, at each p-Lebesgue point of f) for all
f 2 Lp(T

d), whenever �̂ is in the homogeneous Herz space _Ep0 , 1 � p < 1,
1=p+ 1=p0 = 1.

In this paper we will extend these results to the summation of Gabor expan-
sions

P
k;n2Zdhf;M�nT�kgiM�nT�k
 and to Wiener amalgam spaces

W (Lp; `q)(R
d ), where �; � > 0, g; 
 2 W (L1; `1)(R

d ) and M denotes the mod-
ulation operator and T the translation operator. Gr�ochenig, Heil and Okoudjou
[17, 18] made use of the Banach space sp;q of complex sequences and proved
that the coeÆcient operator Cg : f 7! (hf;M�nT�kgi)k;n2Zd is bounded from

W (Lp; `q)(R
d ) to sp;q and the reconstruction operator R
 is bounded from sp;q

to W (Lp; `q)(R
d ). In the case where p =1 or q =1 they obtained weak con-

vergence of R
 . By taking a closed subspace of W (Lp; `1), namely the space
W (Lp; c0), we will prove strong type results in the endpoint case, too. We need
this result to verify later the uniform convergence of Gabor series.

For c = (ck;n)k;n2Zd 2 sp;q we investigate the �-means ��K;Nc of the Gabor

series with coeÆcients c and get that ��K;Nc ! R
c in W (Lp; `q)(R
d ) norm as

K;N ! 1 (1 � p < 1), whenever �̂ 2 L1(R
d ). If g de�nes a Gabor frame

G(g; �; �) with dual frame G(
; �; �), then the �-means ��K;Nf of the Gabor

expansion of f 2W (Lp; `q)(R
d ) converge to f in norm. Moreover, if f; g, and 


are continuous and p =1, we obtain uniform convergence.

We will show similar results for the pointwise convergence. If 
 has com-
pact support and c 2 sp;q then ��K;Nc ! R
c a.e., whenever �̂ 2 _Er0(R

d),
1 � r � p <1, 1=r + 1=r0 = 1. If 
 has no compact support, then the conver-
gence holds for 1 � r < p <1. If in addition G(g; �; �) is a Gabor frame with
dual frame G(
; �; �), then ��K;Nf ! f a.e., where f 2 W (Lp; `q)(R

d ). More-
over, the maximal operator of the �-means of the Gabor expansion is bounded
on W (Lp; `q)(R

d). Analogous results are obtained for the partial sums of Ga-
bor series as well. Finally, the Hardy-Littlewood inequality and Marcinkiewicz
multiplier theorem are generalized for Gabor expansions.

2 Wiener amalgam spaces

Let us �x d � 1, d 2 N. For a set Y 6= ; let Yd be its Cartesian product Y�: : :�Y
taken with itself d-times. For x = (x1; : : : ; xd) 2 Rd and u = (u1; : : : ; ud) 2 Rd
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set

u � x :=

dX
k=1

ukxk and jxj := max
k=1;:::;d

jxkj:

The `p (1 � p � 1) space consists of all complex sequences a = (ak)k2Zd for
which

kak`p :=
� X
k2Zd

jakjp
�1=p

<1

with the usual modi�cation if p = 1. The set of sequences (ak) with the
property limjkj!1 ak = 0 is denoted by c0 and it is equipped with the `1 norm.

We brie
y write Lp or Lp(R
d) instead of Lp(R

d ; �) space equipped with the
norm (or quasi-norm) kfkp := (

R
Rd
jf jp d�)1=p (0 < p � 1), where � is the

Lebesgue measure. The space of continuous functions with the supremum norm
is denoted by C(Rd ) and we will use C0(R

d) for the space of continuous functions
vanishing at in�nity. Cc(R

d) denotes the space of continuous functions having
compact support.

Translation and modulation of a function f are de�ned, respectively, by

Txf(t) := f(t� x) and M!f(t) := e2�{!�tf(t) (x; ! 2 Rd):

For a set H we use the notation TxH := H � x. The Fourier transform of
f 2 L1(R

d) is

Ff(x) := f̂(x) :=

Z
Rd

f(t)e�2�{x�t dt (x 2 Rd );

where { =
p�1.

Let Q and Q� denote the cubes

Q = [0; 1)d; Q� = [0; �)d (� > 0):

A measurable function f belongs to the Wiener amalgam space W (Lp; `q)(R
d )

(1 � p; q � 1) if

kfkW (Lp;`q) :=
� X
k2Zd

kf(�+ k)kqLp(Q)

�1=q
=
� X
k2Zd

kf � Tk1Qkqp
�1=q

<1;

with the obvious modi�cation for q =1. It is easy to show that the norm

kfk :=
� X
k2Zd

kf � T�k1Q�kqp
�1=q

<1

is an equivalent norm on W (Lp; `q)(R
d ). The closed subspace of W (L1; `q)(R

d )
containing continuous functions is denoted by W (C; `q)(R

d) (1 � q � 1).
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W (Lp; c0)(R
d) is de�ned analogously (1 � p � 1). The space W (C; `1)(R

d )
is called Wiener algebra.

It is easy to see that W (Lp; `p)(R
d) = Lp(R

d ),

W (Lp1 ; `q)(R
d ) - W (Lp2 ; `q)(R

d ) (p1 � p2)

and
W (Lp; `q1)(R

d) ,!W (Lp; `q2)(R
d) (q1 � q2);

(1 � p1; p2; q1; q2 � 1). Thus,

W (L1; `1)(R
d) � Lp(R

d ) �W (L1; `1)(Rd) (1 � p � 1):

In this paper the constants C and Cp may vary from line to line and the
constants Cp are dependent only on p.

3 Reconstruction and coeÆcient operators

Given a window g 2 L2(R
d) and �; � > 0, we say that the collection

G(g; �; �) := fM�nT�kg : k; n 2 Zdg
is a Gabor frame for L2(R

d ) if there exist constants A;B > 0 such that

Akfk22 �
X

k;n2Zd

jhf;M�nT�kgij2 � Bkfk22

for all f 2 L2(R
d ). In this case there exists a dual window 
 2 L2(R

d) such that
G(
; �; �) is also a Gabor frame for L2(R

d) and

f =
X

k;n2Zd

hf;M�nT�kgiM�nT�k
 =
X

k;n2Zd

hf;M�nT�k
iM�nT�kg (1)

for all f 2 L2(R
d). This series converges unconditionally in L2(R

d ) and the `2
norm of the Gabor coeÆcients (hf;M�nT�k
i) is an equivalent norm on L2(R

d).
For more details we refer to Daubechies [4] or Gr�ochenig [16].

Under some stronger condition on g and 
, (1) is also valid for other function
spaces. If g; 
 is in the Feichtinger's algebra, then (1) holds for modulation
spaces (see Feichtinger and Zimmermann [11] and Gr�ochenig [16]) and if g; 
 2
W (L1; `1), then for Lp and amalgam spaces (Gr�ochenig, Heil, and Okoudjou
[17, 18]). In the last case the convergence is conditional; �rst we sum over n
and then over k. Summing over n in the �rst sum in (1), we obtain formally the
trigonometric series

mk(x) =
X
n2Zd

hf;M�nT�kgie2�{�n�x
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with period 1=�. Then (1) reads as

f =
X
k2Zd

mkT�k
:

Let us introduce the space sp;q as in Gr�ochenig, Heil, and Okoudjou [18].
The nth Fourier coeÆcient of a 1=� periodic function h 2 L1(Q1=�) is given by

ĥ(n) := �d
Z
Q1=�

h(t)e�2�{�n�t dt (n 2 Zd):

A sequence c = (ck;n)k;n2Zd of complex numbers is in sp;q (1 � p; q � 1) if there
exist 1=� periodic functions mk 2 Lp(Q1=�) such that

m̂k(n) = ck;n; k; n 2 Zd

and

kcksp;q :=
� X
k2Zd

kmkkqLp(Q1=�)

�1=q
<1

with the usual modi�cation for q =1. Note that the functions mk are unique.
If 1 < p <1, then mk can be written as the Fourier series

mk(x) =
X
n2Zd

ck;ne
2�{�n�x

in the sense that the rectangular partial sums converge to mk in the norm of
Lp(Q1=�) (cf. Zygmund [29] or Weisz [28]).

The closed subspace sp;q;0 contains all elements of sp;q for which

lim
k!1

kmkkLp(Q1=�) = 0:

Of course, sp;q = sp;q;0 if 1 � p � 1 and 1 � q < 1. Similarly, let `q;0 := `q if
1 � q <1 and `1;0 := c0.

The following two theorems are proved by Gr�ochenig, Heil, and Okoudjou
[17, 18] for Wiener amalgam spaces W (Lp; `q)(R

d ) if 1 � p; q � 1 and by
Balan and Daubechies [1] for W (L2; `1)(Rd). They obtained weak convergence
for p = 1 and/or q = 1. For this endpoint case we verify here strong type
theorems.

Theorem 1 Assume that 
 2 W (L1; `1)(R
d) and c 2 sp;q for some 1 � p; q �

1. Then the reconstruction operator

R
c :=
X
k2Zd

mkT�k
 (2)
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converges unconditionally in W (Lp; `q)(R
d ) norm if 1 � q < 1 and uncondi-

tionally in the w� topology of W (Lp; `1)(Rd ) if q = 1. If c 2 sp;1;0, then

the convergence holds unconditionally in W (Lp; `1)(Rd) norm. Moreover, R
 is

bounded from sp;q to W (Lp; `q)(R
d) and from sp;1;0 to W (Lp; `1;0)(R

d ) and

kR
ckW (Lp;`q) � Ck
kW (L1;`1)kcksp;q : (3)

If q � p and c 2 sp;q;0, then the sum in (2) converges unconditionally a.e.

Proof. Except the results concerning the space sp;1;0 and the a.e. convergence,
Theorem 1 was proved in Gr�ochenig, Heil, and Okoudjou [18] with the help of
the inequality

���
D X
k2Zd

mkT�k
; h
E���

� C
X
l2Zd

X
k2Zd

k
T�l1Q�k1kmkkLp(Q1=�)khT�k+�l1Q�kp0 (4)

� Ck
kW (L1;`1)

� X
k2Zd

kmkkqLp(Q1=�)

�1=qkhkW (Lp0 ;`q0)
;

where h 2 W (Lp0 ; `q0)(R
d) and p0 denotes the dual index to p. Note that the

dual space of W (Lp; `q)(R
d) is W (Lp0 ; `q0)(R

d).
From this inequality we can see the unconditional convergence in

W (Lp; `1)(Rd) norm, too, if c 2 sp;1;0. Since, for a �xed k 2 Z
d, T�k
 2

W (L1; `1)(R
d), we have

kmkT�k
kLp(TjQ) � C sup
TjQ
jT�k
j kmkkLp(Q1=�) ! 0 as j !1;

and so mkT�k
 2 W (Lp; c0)(R
d ). This implies R
c 2 W (Lp; c0)(R

d) because
W (Lp; c0)(R

d) is complete.
For the almost everywhere convergence of the sum in (2) observe that `q ,! `p

if q � p and so

� X
k2Zd

kmkkpLp(Q1=�)

�1=p � � X
k2Zd

kmkkqLp(Q1=�)

�1=q
= kcksp;q;0 <1:

Hence, X
k2Zd

Z
Q1=�

jmkjp d� =

Z
Q1=�

X
k2Zd

jmkjp d� <1:

This implies that
P

k2Zd jmkjp is a.e. �nite and

mk ! 0 a.e. as k !1: (5)
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Consequently,

jR
c�
X
jkj�K

mkT�k
j �
X
jkj>K

jmkT�k
j � k
kW (L1;`1) sup
jkj>K

jmkj ! 0

as K !1.

Note that if 
 has compact support, then the sum in (2) is �nite for every
�xed x.

Theorem 2 If g 2 W (L1; `1)(R
d) and f 2 W (Lp; `q)(R

d ) for some 1 � p; q �
1 then the coeÆcient operator

Cgf := (hf;M�nT�kgi)k;n2Zd

is bounded from W (Lp; `q)(R
d) to sp;q and from W (Lp; `1;0)(R

d) to sp;1;0 and

kCgfksp;q � CkgkW (L1;`1)kfkW (Lp;`q): (6)

Moreover, there exist unique functions mk 2 Lp(Q1=�) which satisfy m̂k(n) =

Cgf(k; n) for all k; n 2 Zd and these are given explicitly by

mk(x) = ��d
X
n2Zd

(f � T�kg)(x� n=�) (7)

with unconditional convergence in Lp(Q1=�).

Proof. Except the results concerning the space sp;1;0 and the norm convergence
in (7) for p =1, the theorem was proved in Gr�ochenig, Heil, and Okoudjou [18].
The norm convergence in (7) follows from

kmkkLp(Q1=�) � ��d
X
n2Zd

k(f � T�kg)(� � n=�)kLp(Q1=�)

= ��d
X
n2Zd

kf � T�kgkLp(Tn=�Q1=�)

� ��d
X
n2Zd

sup
Tn=�Q1=�

jT�kgjkfkLp(Tn=�Q1=�) (8)

� C��d
X
n2Zd

sup
Tn=�Q1=�

jT�kgjkfkW (Lp;`q)

� C��dkgkW (L1;`1)kkfkW (Lp;`q)

for all 1 � p � 1. We must show that if f 2W (Lp; c0)(R
d), then Cgf 2 sp;1;0,

i.e., limk!1 kmkkLp(Q1=�) = 0. In this case if n is large enough in (8), say
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jnj � N , then kfkLp(Tn=�Q1=�) < � and so

��d
X
jnj�N

sup
Tn=�Q1=�

jT�kgjkfkLp(Tn=�Q1=�) � ���d
X
jnj�N

sup
Tn=�Q

jT�kgj

� ���dkgkW (L1;`1):

On the other hand, if jnj < N in (8), then there exists a number Kk such that

��d
X
jnj<N

sup
Tn=�Q1=�

jT�kgjkfkLp(Tn=�Q1=�)

� C��dkfkW (Lp;c0)

X
jnj<N

sup
T�k+n=�Q1=�

jgj

� C��dkfkW (Lp;c0)

X
jjj�Kk

sup
TjQ
jgj:

It is easy to see that Kk !1 as k !1 and then

X
jjj�Kk

sup
TjQ
jgj ! 0 as k !1:

This means that

��d
X
jnj<N

sup
Tn=�Q1=�

jT�kgjkfkLp(Tn=�Q1=�) < �

if k is large enough; thus, limk!1 kmkkLp(Q1=�) = 0.

The Gabor frame operator is de�ned formally by

Sg;
f :=
X

k;n2Zd

hf;M�nT�kgiM�nT�k
:

If we give the meaning Sg;
f := R
Cgf to this de�nition, then we obtain the
following.

Corollary 1 If g; 
 2 W (L1; `1)(R
d ), then Sg;
 is bounded on W (Lp; `q)(R

d )
and on W (Lp; `1;0)(R

d ) (1 � p; q � 1), and

kSg;
fkW (Lp;`q) � CkgkW (L1;`1)k
kW (L1;`1)kfkW (Lp;`q):

The following two results are due to Gr�ochenig, Heil, and Okoudjou [17, 18].
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Theorem 3 If g; 
 2 W (L1; `1)(R
d) and f 2 W (Lp; `q)(R

d) for some 1 �
p; q � 1, then the Walnut representation

R
Cgf = ��d
X
n2Zd

Gn � Tn=�f (9)

holds with absolute convergence in W (Lp; `q)(R
d ), where

Gn(x) :=
X
k2Zd

g(x� n=� � �k)
(x� �k): (10)

Corollary 2 Assume that g; 
 2W (L1; `1)(R
d ) such that G(g; �; �) is a Gabor

frame for L2(R
d) with dual frame G(
; �; �). If f 2 W (Lp; `q)(R

d ) for some

1 � p; q � 1, then R
Cgf = f and we have the norm equivalence kfkW (Lp;`q) �
kCgfksp;q .

4 Norm convergence of Gabor expansions

It is known that the rectangular partial sums of the multi-dimensional Fourier
series X

n2Zd

ĥ(n)e2�{�n�x

of h 2 Lp(Q1=�) (1 < p < 1) converge to h in Lp(Q1=�) norm (cf. Zygmund
[29] or Weisz [28]). Moreover, according to one of the deepest result in harmonic
analysis, the square partial sums of the Fourier series converge a.e. to h 2
Lp(Q1=�) (1 < p <1) (see Carleson [3], Hunt [20] and, in the more-dimensional
case, Fe�erman [7], and also Grafakos [14]), i.e.,

SNh! h in Lp(Q1=�) norm and a.e. as N !1; (11)

where
SNh(x) :=

X
jnj�N

ĥ(n)e2�{�n�x (N 2 N):

Using these theorems, similar convergence results will be proven for Gabor ex-
pansions in this and the next sections.

For c 2 sp;q (1 � p; q � 1) and 
 2W (L1; `1) let

S
;K;Nc := SK;Nc :=
X
jkj�K

X
jnj�N

ck;nM�nT�k
 (K;N 2 N):

Then SK;1c means formally

SK;1c(x) =
X
jkj�K

� X
n2Zd

ck;ne
2�{�n�x

�
T�k
(x):
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If 1 < p <1, then, by (11),

SK;1c =
X
jkj�K

mkT�k


and, as we have seen in Theorem 1, SK;1c converges to Rgc in W (Lp; `q;0)(R
d )

norm as K !1. Gr�ochenig, Heil, and Okoudjou [17, 18] veri�ed that SK;Nc!
Rgc in W (Lp; `q)(R

d) norm as K;N ! 1 and 1 < p < 1; 1 � q < 1. Obvi-
ously,

SK;Nc =
X
jkj�K

(SNmk)T�k
: (12)

If p = 1, then the results in (11) are not true. However, using a summability
method, say the Fej�er's method, we can extend (11). Summability methods are
used quite often in Fourier analysis. For the theory of summation see e.g. Butzer
and Nessel [2], Trigub and Belinsky [25] and Weisz [28]. The N th Fej�er mean of
the Fourier series of h 2 L1(Q1=�) is given by

�Nh(x) :=
X
jnj�N

� dY
j=1

�
1� jnjj

N + 1

��
ĥ(n)e2�{�n�x (N 2 N):

Then

�Nh! h in Lp(Q1=�) norm and a.e. as N !1; (13)

whenever 1 � p < 1. If h is continuous, then the convergence holds uniformly
(see Marcinkiewicz and Zygmund [23, 29] or Weisz [28]).

We de�ne the Fej�er means for Gabor series as well: if c 2 sp;q (1 � p; q �1),
then let

�
;K;Nc := �K;Nc :=
X
jkj�K

X
jnj�N

� dY
j=1

�
1� jnjj

N + 1

��
ck;nM�nT�k
:

It is easy to see that

�K;Nc =
X
jkj�K

(�Nmk)T�k
: (14)

Instead of Fej�er summation, we may take a general summability method, the
so-called �-summability de�ned by one single function �. For � 2 W (C; `1) the
N th �-mean of the Fourier series of h 2 L1(Q1=�) resp. of the Gabor series of
c 2 sp;q (1 � p; q � 1) are de�ned by

��Nh(x) :=
X
n2Zd

�
� �n
N + 1

�
ĥ(n)e2�{�n�x
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and

��
;K;Nc := ��K;Nc :=
X
jkj�K

X
n2Zd

�
� �n
N + 1

�
ck;nM�nT�k
 (K;N 2 N):

Observe that these series are absolutely convergent because

jĥ(n)j � khk1; jck;nj � kmkk1 � kcksp;q
and X

n2Zd

����
� �n
N + 1

���� � (N + 1)dk�kW (C;`1) <1:

We can see immediately that (14) holds in this case, too, namely

��K;Nc =
X
jkj�K

(��Nmk)T�k
: (15)

If � = 1[�1;1]d, then we obtain the partial sums; if �(x) =
Qd

j=1max(0; 1� jxj j),
then the Fej�er means.

In Feichtinger and Weisz [9, 10] we veri�ed the analogous statements to (13)
for �-summability. If �̂ 2 L1(R

d), then

��Nh! �(0)h in Lp(Q1=�) norm as N !1 (16)

for all h 2 Lp(Q1=�) (1 � p < 1). If h 2 C(Q1=�), then the convergence is
uniform (see [9]). The almost everywhere convergence is treated in the next
section.

Now we are ready to prove the norm convergence of Gabor expansions in
amalgam spaces.

Theorem 4 Assume that 
 2W (L1; `1)(R
d) and c 2 sp;q.

(i) If 1 < p <1 and 1 � q <1, then

lim
K;N!1

SK;Nc = R
c in W (Lp; `q)(R
d ) norm:

If q =1, then the convergence holds in the w� topology of W (Lp; `1)(Rd )
and if c 2 sp;1;0, then in W (Lp; `1)(Rd) norm.

(ii) If �̂ 2 L1(R
d ), 1 � p <1 and 1 � q <1, then

lim
K;N!1

��K;Nc = �(0)R
c in W (Lp; `q)(R
d) norm:

If q =1, then the convergence holds in the w� topology of W (Lp; `1)(Rd )
and if c 2 sp;1;0, then in W (Lp; `1)(Rd) norm.
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(iii) If �̂ 2 L1(R
d), p = 1, 1 � q < 1, and mk is continuous for all k 2 Zd,

then

lim
K;N!1

��K;Nc = �(0)R
c in W (L1; `q)(R
d ) norm:

If q =1, then the convergence holds in the w� topology of L1(Rd) and if

c 2 s1;1;0, then in L1(Rd) norm. If in addition 
 is continuous as well,

then we obtain convergence in W (C; `q)(R
d ) norm if 1 � q < 1 and in

C(Rd) norm if q =1 and c 2 s1;1;0.

Proof. If c 2 sp;q;0, then for all � > 0 we can �nd K0 = K0(�) such that

� X
jkj>K0

kmkkqLp(Q1=�)

�1=q
< �

with the usual modi�cation for q = 1. Using (15) we can write the di�erence
�(0)R
c� ��K;Nc in the following form

�(0)R
c� ��K;Nc =
�
�(0)R
c� �(0)

X
jkj�K0

mkT�k

�

+
�
�(0)

X
jkj�K0

mkT�k
 �
X

jkj�K0

(��Nmk)T�k

�

+
� X
jkj�K0

(��Nmk)T�k
 �
X
jkj�K

(��Nmk)T�k

�
: (17)

Applying Theorem 1, the inequality

k��NhkLp(Q1=�) � CkhkLp(Q1=�) (N 2 Nd ; 1 � p � 1) (18)

and (16) we conclude that

k�(0)R
c� ��K;NckW (Lp;`q;0)

� j�(0)j



 X
jkj>K0

mkT�k





W (Lp;`q;0)

+



 X
jkj�K0

(�(0)mk � ��Nmk)T�k





W (Lp;`q;0)

+



 X
K0<jkj�K

(��Nmk)T�k





W (Lp;`q;0)

� Cj�(0)jk
kW (L1;`1)

� X
jkj>K0

kmkkqLp(Q1=�)

�1=q

+ Ck
kW (L1;`1)

� X
jkj�K0

k�(0)mk � ��NmkkqLp(Q1=�)

�1=q
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+ Ck
kW (L1;`1)

� X
K0<jkj�K

k��NmkkqLp(Q1=�)

�1=q

� C�k
kW (L1;`1);

if N is suÆciently large and K > K0, which shows (ii) and (iii) for 1 � q < 1
or q =1 and c 2 sp;1;0.

To prove the w� convergence for q =1, let h 2 W (Lp0 ; `1)(R
d). We get by

(17) that

���
D
�(0)R
c� ��K;Nc; h

E��� � j�(0)j
���
D X
jkj>K0

mkT�k
; h
E���

+
���
D X
jkj�K0

(�(0)mk � ��Nmk)T�k
; h
E���

+
���
D X
K0<jkj�K

(��Nmk)T�k
; h
E���:

The �rst and third term is small if K0 is suÆciently large, because of (4) and
(18). We obtain for the second term analogously to (4) that

���
D X
jkj�K0

(�(0)mk � ��Nmk)T�k
; h
E���

� C
X
l2Zd

X
jkj�K0

k
T�l1Q�k1k�(0)mk � ��NmkkLp(Q1=�)khT�k+�l1Q�kp0 ;

and, by (16), this converges to 0 as N !1. This proves the w� convergence in
(ii) and (iii). With the help of (11) the statement (i) can be proven similarly.

Note that (i) was proved for 1 � q < 1 by Gr�ochenig, Heil, and Okoudjou
[17, 18]. Let us apply this theorem to c = Cgf . The following notations will be
used:

Sg;
;K;Nf := SK;Nf := SK;N(Cgf) =
X
jkj�K

X
jnj�N

hf;M�nT�kgiM�nT�k
;

��g;
;K;Nf := ��K;Nf := ��K;N(Cgf)

=
X
jkj�K

X
n2Zd

�
� �n
N + 1

�
hf;M�nT�kgiM�nT�k
:

Corollary 3 Assume that g; 
 2W (L1; `1)(R
d ) such that G(g; �; �) is a Gabor

frame for L2(R
d ) with dual frame G(
; �; �). Let f 2W (Lp; `q)(R

d ).
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(i) If 1 < p <1 and 1 � q <1, then

lim
K;N!1

SK;Nf = f in W (Lp; `q)(R
d ) norm:

If q =1, then the convergence holds in the w� topology of W (Lp; `1)(Rd )
and if f 2W (Lp; `1;0)(R

d ), then in W (Lp; `1)(Rd) norm.

(ii) If �̂ 2 L1(R
d ), 1 � p <1 and 1 � q <1, then

lim
K;N!1

��K;Nf = �(0)f in W (Lp; `q)(R
d ) norm:

If q =1, then the convergence holds in the w� topology of W (Lp; `1)(Rd )
and if f 2W (Lp; `1;0)(R

d ), then in W (Lp; `1)(Rd) norm.

(iii) If �̂ 2 L1(R
d ), p =1, 1 � q <1 and f and g are continuous then

lim
K;N!1

��K;Nf = �(0)f in W (L1; `q)(R
d) norm:

If q = 1, then the convergence holds in the w� topology of L1(Rd) and
if f 2 L1;0(R

d ), then in L1(Rd ) norm. If in addition 
 is continuous as

well, then we get convergence in W (C; `q)(R
d ) norm if 1 � q <1 and in

C(Rd) norm if q =1 and f 2 C0(R
d ).

Proof. This corollary follows from Theorem 4 and Corollary 2. By (7), if p =1
and f and g are continuous, then the functions mk (k 2 Zd) are continuous, too.

Note that Fej�er summation of Gabor series for Lp spaces was also investigated
in Grafakos and Lennard [15] and Lyubarskii and Seip [22].

All the results of this section can also be proven for rectangular partial sums.
Namely, if we de�ne SK;Nc and ��K;Nc by

SK;Nc :=

K1X
k1=�K1

: : :

KdX
kd=�Kd

N1X
n1=�N1

: : :

NdX
nd=�Nd

ck;nM�nT�k


and

��K;Nc :=

K1X
k1=�K1

: : :

KdX
kd=�Kd

X
n2Zd

�
� �n1

N1 + 1
; : : : ;

�nd
Nd + 1

�
ck;nM�nT�k
;

(K;N 2 Nd ) then the same theorems hold. In this case under K;N ! 1 we
mean that Kj ; Nj !1 for all j = 1; : : : ; d.
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5 A.e. convergence of Gabor expansions

First, we investigate the a.e. convergence of summations of Fourier series. In
Feichtinger and Weisz [10] we applied the homogeneous Herz spaces in summa-
bility theory. _Eq(R

d) contains all measurable functions f for which

kfk _Eq
:=

1X
k=�1

2kd(1�1=q)kf1Pkkq <1;

where Pk := fx : jxj < 2kg n fx : jxj � 2k�1g. These spaces are special cases of
the Herz spaces [19] (see also Feichtinger [8], Garcia-Cuerva and Herrero [13]).
It is easy to see that

L1(R
d) = _E1(R

d) - _Eq(R
d ) - _Er(R

d ) - _E1(Rd); 1 < q < r <1:

In this way we obtained ([10]) the following result: if �̂ 2 _Ep0(R
d ), then

��Nh! �(0)h a.e. as N !1 (19)

for all h 2 Lp(Q1=�), where 1 � p < 1 and 1=p + 1=p0 = 1. Actually, the
convergence holds at every Lebesgue point. Some suÆcient conditions for �
such that �̂ 2 _Er0(R

d) and many examples can be found in [10].
These results are generalized for Gabor series as follows.

Theorem 5 Assume that 
 2 L1(Rd) with compact support and c 2 sp;q.
(i) If 1 < p <1 and 1 � q � 1, then

lim
K;N!1

SK;Nc = R
c a.e.

(ii) If �̂ 2 _Er0(R
d ), 1 � r � p <1, 1=r + 1=r0 = 1 and 1 � q � 1, then

lim
K;N!1

��K;Nc = �(0)R
c a.e.

Proof. Taking (17) for a �xed x, we observe that the �rst and third term on
the right hand side is equal to 0, if K0 is large enough, since 
 has compact
support. Thus,

j�(0)R
c(x) � ��K;Nc(x)j =
��� X
jkj�K0

(�(0)mk(x)� ��Nmk(x))T�k
(x)
���

� k
k1
X

jkj�K0

j�(0)mk(x)� ��Nmk(x)j

and (19) proves the theorem.
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Note that sp1;q  - sp2;q if p1 � p2 and sp;q1 ,! sp;q2 if q1 � q2.
In order to extend this theorem to functions 
 2W (L1; `1)(R

d ), which lack
compact support, we introduce the maximal operators S� and ��� by

S
;�c := S�c := sup
K;N2N

jSK;Ncj; Sg;
;�f := S�f := S�(Cgf) := sup
K;N2N

jSK;Nf j;

��
;�c := ���c := sup
K;N2N

j��K;Ncj; ��g;
;� := ���f := ���(Cgf) := sup
K;N2N

j��K;Nf j:

For the trigonometric Fourier series of h 2 Lp(Q1=�) we use analogous notations.
It is known that

kS�hkLp(Q1=�) � CpkhkLp(Q1=�) (1 < p <1) (20)

and
k���hkLp(Q1=�) � CpkhkLp(Q1=�) (1 � r < p <1); (21)

whenever �̂ 2 _Er0 (see Carleson [3], Hunt [20], Fe�erman [7], Grafakos [14] and
Feichtinger and Weisz [10]). Now we prove similar inequalities for Gabor series.

Theorem 6 Assume that g; 
 2W (L1; `1)(R
d ), c 2 sp;q and f 2W (Lp; `q)(R

d ).

(i) If 1 < p <1 and 1 � q � 1, then

kS�ckW (Lp;`q) � Cpk
kW (L1;`1)kcksp;q ; (22)

kS�fkW (Lp;`q) � CpkgkW (L1;`1)k
kW (L1;`1)kfkW (Lp;`q): (23)

(ii) If �̂ 2 _Er0(R
d ), 1 � r < p <1, 1=r + 1=r0 = 1 and 1 � q � 1, then

k���ckW (Lp;`q) � Cpk
kW (L1;`1)kcksp;q ; (24)

k���fkW (Lp;`q) � CpkgkW (L1 ;`1)k
kW (L1;`1)kfkW (Lp;`q): (25)

Proof. By (15),

���c �
X
k2Zd

(���mk)jT�k
j:

Using Theorem (1) and (21), we obtain

k���ckW (Lp;`q) � Ck
kW (L1;`1)

� X
k2Zd

k���mkkqLp(Q1=�)

�1=q

� Cpk
kW (L1;`1)

� X
k2Zd

kmkkqLp(Q1=�)

�1=q

= Cpk
kW (L1;`1)kcksp;q ;
which proves (24). (25) comes from Theorem 2. The inequalities for S� can be
shown similarly.
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By (21) we can see as in (5) that ���mk ! 0 a.e. as k ! 1, whenever
c 2 sp;q, �̂ 2 _Er0(R

d ), 1 � r < p < 1 and q � p. Using (17) we could verify
Theorem 5 for a general 
 2 W (L1; `1)(R

d) and for 1 � r < p < 1, q � p.
However, the next result is more general.

Theorem 7 Assume that 
 2W (L1; `1)(R
d) and c 2 sp;q.

(i) If 1 < p <1 and 1 � q � 1, then

lim
K;N!1

SK;Nc = R
c a.e.

(ii) If �̂ 2 _Er0(R
d ), 1 � r < p <1, 1=r + 1=r0 = 1 and 1 � q � 1, then

lim
K;N!1

��K;Nc = �(0)R
c a.e.

Proof. Fix c 2 sp;q and set

� := lim sup
K;N!1

j��
;K;Nc� �(0)R
cj:

For (ii) it is suÆcient to show that � = 0 a.e.

Choose 
m 2W (L1; `1)(R
d) with compact support such that

k
 � 
mkW (L1;`1) ! 0 as m!1:

By Theorem 5,

� � lim sup
K;N!1

j��
;K;Nc� ��
m;K;Ncj

+ lim sup
K;N!1

j��
m;K;Nc� �(0)R
mcj+ j�(0)R
mc� �(0)R
cj

� ��
�
m;�c+ j�(0)R
�
mcj

for all m 2 N. Taking into account Theorems 1 and 6, we conclude

k�kW (Lp;`q) � k��
�
m;�ckW (Lp;`q) + k�(0)R
�
mckW (Lp;`q)

� Cpk
 � 
mkW (L1;`1)kcksp;q

for allm 2 N. Since 
m ! 
 inW (L1; `1)(R
d ) norm asm!1, k�kW (Lp;`q) = 0

and so � = 0 a.e. (i) can be shown in an analogous way.

Corollary 4 Assume that g; 
 2W (L1; `1)(R
d ) such that G(g; �; �) is a Gabor

frame for L2(R
d ) with dual frame G(
; �; �). Let f 2W (Lp; `q)(R

d ).
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(i) If 1 < p <1 and 1 � q � 1, then

lim
K;N!1

SK;Nf = f a.e.

(ii) If �̂ 2 _Er0(R
d ), 1 � r < p <1, 1=r + 1=r0 = 1 and 1 � q � 1, then

lim
K;N!1

��K;Nf = �(0)f a.e.

If 
 has compact support, then this convergence holds for 1 � r � p <1.

6 Hardy-Littlewood inequalities

If p = 2, then by Parseval formula

kcks2;q =
� X
k2Zd

� X
n2Zd

jck;nj2
�q=2�1=q

:

Now Theorem 2 implies

� X
k2Zd

� X
n2Zd

jhf;M�nT�kgij2
�q=2�1=q

= kCgfks2;q � CkgkW (L1;`1)kfkW (L2;`q)

with the obvious modi�cation for q = 1. Of course, if q also equals 2, then
s2;2 = `2 and W (L2; `2) = L2. Similarly,

kR
ckW (L2;`q) � Ck
kW (L1;`1)

� X
k2Zd

� X
n2Zd

jck;nj2
�q=2�1=q

:

We will generalize these inequalities for 1 < p <1 below.
For Fourier series of h 2 Lp(Q1=�) it is known that

� X
n2Zd

jĥ(n)jp
((jn1j+ 1) � � � (jndj+ 1))2�p

�1=p
� CpkhkLp(Q1=�) (1 < p � 2)

and

khkLp(Q1=�) � Cp

� X
n2Zd

jĥ(n)jp
((jn1j+ 1) � � � (jndj+ 1))2�p

�1=p
(2 � p <1)

(see Edwards [5], Jawerth and Torchinsky [21] and Weisz [27]).

Theorem 8 Assume that g 2 W (L1; `1)(R
d) and f 2 W (Lp; `q)(R

d ) for some
1 < p � 2, 1 � q � 1. Then

� X
k2Zd

� X
n2Zd

jhf;M�nT�kgijp
((jn1j+ 1) � � � (jndj+ 1))2�p

�q=p�1=q � CpkgkW (L1;`1)kfkW (Lp;`q):
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Proof. The proof follows from

� X
k2Zd

� X
n2Zd

jhf;M�nT�kgijp
((jn1j+ 1) � � � (jndj+ 1))2�p

�q=p�1=q

� Cp

� X
k2Zd

kmkkqLp(Q1=�)

�1=q

= CpkCgfksp;q
and from Theorem 2.

We obtain the next theorem in the same way.

Theorem 9 Assume that 
 2W (L1; `1)(R
d) and

� X
k2Zd

� X
n2Zd

jck;njp
((jn1j+ 1) � � � (jndj+ 1))2�p

�q=p�1=q

is �nite for some 2 � p <1 and 1 � q � 1. Then R
c 2W (Lp; `q) and

kR
ckW (Lp;`q)

� Cpk
kW (L1;`1)

� X
k2Zd

� X
n2Zd

jck;njp
((jn1j+ 1) � � � (jndj+ 1))2�p

�q=p�1=q
:

7 Marcinkiewicz multiplier theorem

To avoid some technical diÆculties, the theorem will be formulated for the one-
dimensional case only. However, it can be simply generalized for higher dimen-
sions.

For a given multiplier � = (�n; n 2 Z) where the �j's are complex numbers,
the multiplier operator is de�ned for Fourier series by

M�h(x) :=
X
n2Z

�nĥ(n)e
2�{�n�x;

where h 2 Lp(Q1=�) (1 < p <1).
The Marcinkiewicz multiplier theorem says that if

j�ij � C;

2i+1�1X
jnj=2i

j�n � �n+1j � C (i 2 N); (26)

then M�h 2 Lp(Q1=�) and

kM�hkLp(Q1=�) � CpkhkLp(Q1=�) (1 < p <1)
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(see Zygmund [29, Vol. II. p. 232], and for the multi-dimensional case Edwards
and Gaudry [6] and Weisz [26]).

For Gabor series let formally

M�f =
X
k;n2Z

�nhf;M�nT�kgiM�nT�k
:

As done before, we take the sum �rst in n:

M�f(x) :=
X
k2Z

�X
n2Z

�nhf;M�nT�kgie2�{�n�x
�
T�k
(x):

It is easy to see that the operator M� is well de�ned for f 2 W (Lp; `q)(R),
1 < p <1, 1 � q � 1.

Theorem 10 Assume that g; 
 2W (L1; `1)(R) and f 2W (Lp; `q)(R) for some
1 < p <1 and 1 � q � 1. If (26) holds, then M�f 2W (Lp; `q)(R) and

kM�fkW (Lp;`q) � Cpk
kW (L1;`1)kgkW (L1;`1)kfkW (Lp;`q):

Proof. It is easy to see that

M�f = R


�
(�nCgf(k; n))k;n2Z

�
:

Then

kM�fkW (Lp;`q) � Ck
kW (L1;`1)

�X
k2Z

kM�mkkqLp(Q1=�)

�1=q

� Cpk
kW (L1;`1)

�X
k2Z

kmkkqLp(Q1=�)

�1=q

� Cpk
kW (L1;`1)kgkW (L1;`1)kfkW (Lp;`q);

which �nishes the proof of the theorem.
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