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Abstract

We propose sampling theorems that reconstruct the optimal approxi-
mation under a certain criterion from a �nite number of degraded, noisy,
sampled values. In that criterion, we minimize the average di�erence be-
tween a reconstructed function and an individual target function over a
noise ensemble subject to the condition that the reconstructed function is
an unbiased estimator of the best approximation obtainable from noiseless
sampled values. We devise a general form for sampling theorems with a
real pulse and with an ideal pulse, thus providing the optimal estimator
even for a singular noise covariance matrix. The relationship between the
proposed criterion and the Gauss-Markov estimator is also discussed. Fi-
nally, we clarify the relationship between the best approximation and the
interpolation.
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1 Introduction

The history of sampling theory began with this familiar theorem [1, 2, 3, 4]. If
a signal, f , contains no frequencies higher than the frequency, 
=2, then the
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signal can be reconstructed from its sampled values via the formula

f(x) =

1X
n=�1

f
�n



� sin�(
x� n)

�(
x� n)
: (1)

The theorem was extended in various directions, such as sampling theorems for
signals of more than one variable, nonuniform sampling, bandpass signals, and
general integral transforms [5, 6, 7, 8].

These theorems were originally proposed for perfect reconstruction under cer-
tain assumptions, such as band limitation, an in�nite number of sampled data,
exact sample points, and exact sampled values. For real-world problems, how-
ever, these assumptions are generally not satis�ed, so the perfect reconstruction
cannot be achieved.

To overcome these problems, the approximation point of view is useful [9]. In
this context, a criterion to evaluate degrees of approximation plays an important
role. Let f̂ be a function reconstructed by a sampling theorem. A simple measure
of the deviation of f̂ from f is

kf̂ � fk2 (2)

when exact sampled values are available, or

Ekf̂ � fk2 (3)

when sampled values are degraded by noise, where E denotes the expectation
over noise ensemble. Since this measure involves the unknown target function,
f , it cannot be evaluated. Thus, many alternatives have been proposed so far.
They can be classi�ed into two groups.

The �rst group of the alternatives minimizes, instead of Eq. (2) or (3), the
sum of the error term between f̂ and f over sample points and the term express-
ing a certain constraint on the target function. These approaches represent a
kind of regularization method, and the second term is called the regularization
term. Various regularization terms have been proposed [10, 11, 12, 13].

The other group of the alternatives minimizes Eq. (2) or (3) in the sense of
the average with respect to target functions f [14, 15], or for the worst target
function [14, 15], or for an individual target function even though f is unknown
[16, 17, 18].

This article focuses on the minimization of Eq. (3) for an individual target
function. We propose sampling theorems that minimize Eq. (3) for a given �nite
number of degraded noisy sampled values under the constraint that f̂ is the
unbiased estimator of the best approximation that can be obtained from noiseless
sampled values.

This paper is organized as follows. In Section 2 we formulate the sampling
problem1 from the approximation point of view. In Section 3 a closed form of an

1In this paper, the term sampling problem refers to a problem of constructing sampling

theorems, i.e., reconstruction formulas.
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Figure 1: Framework to discuss the sampling problem.

optimal reconstruction operator is devised. Based on the closed form, we develop
sampling theorems with optimum noise suppression in Section 4. Finally, the
relationship between the best approximation and the interpolation is clari�ed in
Section 5.

2 Formulation of the Sampling Problem

We formulate the sampling problem from the approximation point of view. Let
f be an original signal to be reconstructed from sampled values associated with
f . The signal f is de�ned on a subset D in a Euclidean space. Assume that
f belongs to a Hilbert space denoted by H1 (see Fig.1). Note that H1 is not
necessarily a reproducing kernel Hilbert space (RKHS); for example, it is not
necessarily band-limited.

When we measure f through a certain device, f is converted into another
signal. We denote the signal by g whose domain is also D. Assume that g
belongs to an RKHS, denoted by H2, with the reproducing kernel K(x;x0).
This guarantees that the value g(x) at each point x 2 D is well de�ned.

Finally, the sampled values of g, denoted by fyngNn=1, at sample points
fxngNn=1 are given by

yn = g(xn) + "n (n = 1; 2; : : : ; N); (4)

where "n is a random noise. We assume that "n has a zero mean and that its
covariance matrix Q is given by

Q = �2Q1; (5)

where Q1 is a known positive semide�nite matrix and � is an unknown positive
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real parameter. By using the Neumann-Schatten product [20], Q is expressed as

Q = E("
 "): (6)

Let A1 be the operator that maps f to g:

A1f = g: (7)

Let gv be the vector whose n-th element is g(xn). Let A2 be the operator that
maps g to gv, i.e., A2g = gv. We denote the totality of A1 and A2 by A, i.e.,
A = A2A1.

Let y and " be vectors inCN whose n-th elements are yn and "n, respectively.
Then,

y = Af + ": (8)

Let X be a linear operator that maps y to an optimal approximation f̂ to f
under a certain criterion:

f̂ = Xy: (9)

Let fengNn=1 be the standard basis in CN . That is, en is the N -dimensional
vector consisting of zero elements except for the n-th element equal to 1. If we
let

un = Xen; (10)

then we have

f̂(x) =

NX
n=1

ynun(x): (11)

The functions fungNn=1 are called reconstruction functions.

Equation (11) is called a sampling theorem with a real pulse. If H2 = H1

and A1 = I, where I is the identity operator on H1, then yn reduces to yn =
f(xn)+"n. In this case Eq. (11) is called a sampling theorem with an ideal pulse
[21].

Given a set of sample points, the sampling problem is to obtain an optimal
set of reconstruction functions fungNn=1 that provides the optimal approximation
f̂ from the sampled data fyngNn=1. This is equivalent to obtain X that provides
the optimal approximation f̂ from the vector y.

3 Optimal Reconstruction Operator

In this paper, the following notations are used. Let T � and T y be the adjoint
operator and the Moore-Penrose generalized inverse of linear operator T , re-
spectively. The range and the null space of T are denoted by R(T ) and N (T ),
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respectively. Let S? and PS be the orthogonal complement of closed subspace
S and the orthogonal projection operator onto S, respectively.

In order to obtain the optimal approximation f̂ to f , we introduce the fol-
lowing criterion.

De�nition 1. An operator X is called an `optimal reconstruction operator' if
X minimizes

J [X] = EkX"k2 (12)

under the constraint of
XA = PR(A�): (13)

The function f̂ in Eq. (9) is called an `optimal estimator' of f if X is the optimal
reconstruction operator.

This criterion is introduced based on the following consideration. We �rst
consider the noiseless case. Then, f̂ is given by

f̂ = XAf:

Our goal in this case is to minimize

J1[X] =k f̂ � f k2=k XAf � f k2 :

Let S be a closed subspace of H1 to which XAf belongs. Then, J1 is minimized
by f̂ = PSf , where PS is the orthogonal projection operator onto S. Hence, we
require that

Xy = PSf for each f 2 H1: (14)

That is, although we do not know the original function f , we want to obtain the
best approximation PSf to each f from sampled values fg(xn)gNn=1.

Note that Eq. (14) does not request the interpolation property. The relation-
ship between the best approximation and the interpolation is clari�ed in Section
5.

Equation (14) is equivalent to the following operator equation:

XA = PS : (15)

Here we use the following lemma.

Lemma 1. [19] For any �xed operators T1 and T2 with closed ranges, the fol-
lowing statements are mutually equivalent.

(i) The equation XT1 = T2 has a solution.

(ii) N (T1) � N (T2).

(iii) T2T
y
1T1 = T2.
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When these conditions hold, a general solution of XT1 = T2 is given by

X = T2T
y
1 + Y (I � T1T

y
1 );

where Y is an arbitrary linear operator.

By Lemma 1 Eq. (15) has a solution if and only if S � R(A�). Then we have
the following.

Lemma 2. For each f 2 H1 the best approximation to f in S can be obtained
from sampled values of f if and only if

S � R(A�): (16)

The range of A� is the largest subspace in which we can obtain the best approx-
imation to f from y.

The larger the subspace S is, the better the approximation PSf becomes.
Hence, we concentrate our attention on this maximal subspace R(A�) hereafter,
i.e., S = R(A�). Then, the best approximation of f becomes the orthogonal
projection of f onto R(A�), and Eq. (15) reduces to Eq. (13).

Now, we consider the noisy case with the measure in Eq. (3):

J1 = E k f̂ � f k2 : (17)

Equations (8) and (9) yield

f̂ = XAf +X": (18)

In order to be consistent with the noiseless case, we preserve the condition

(13) for the noisy case. Let us denote the mean of f̂ by f̂ . Since " has a mean

value 0, it follows from Eq. (18) that f̂ = PR(A�)f if and only if XA = PR(A�).
Thus, we have the following Lemma.

Lemma 3. The estimator f̂ in Eq. (18) is an unbiased estimator of PR(A�)f if
and only if XA = PR(A�).

The measure J1 in Eq. (17) has the following bias-variance decomposition:

J1 =k f̂ � f k2 +E k f̂ � f̂ k2 : (19)

Since f̂ = PR(A�)f , Eq. (19) becomes

J1 =k PR(A�)f � f k2 +E k X" k2 : (20)

The �rst term of this equation is independent of X. Hence, the minimization
of J1 with respect to X is equivalent to the minimization of Eq. (12) under the
constraint of XA = PR(A�). In light of these considerations, we established
De�nition 1.

The optimal reconstruction operator in the sense of De�nition 1 is given as
follows.
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Theorem 1. (Optimal reconstruction operator) The optimal reconstruc-
tion operator always exists. Its general form is given by

X = V yA�U y + Y (I � UU y); (21)

where U and V are operators de�ned by

U = AA� +Q1; (22)

V = A�U yA; (23)

and Y is an arbitrary linear operator from CN to H1. The minimum value, say
J0, of J [X] is given by

J0 = �2(tr(V y)�M0); (24)

where M0 is the dimension of R(A�) and tr(V y) is the trace of the operator V y

[20].

The operator U depends only on Q1 in Eq. (5), and independent of the
unknown parameter �2. Hence, so is X in Eq. (21).

Theorem 1 is proved along the following line. (i) Properties of operators U
and V are summerized in Lemma 4. (ii) The constrained optimization problem
is reduced to a pair of linear equations in Lemma 5. (iii) The pair of linear
equations is reduced to a single equation in Lemma 6. (iv) By using these
lemmas, Theorem 1 is proved.

The operators U and V have the following properties.

Lemma 4. The operators U and V are positive semide�nite. Furthermore, it
holds that

UU yA = A; (25)

V V y = V yV = PR(A�); (26)

R(U) = R(A) _+Q1R(A)
?: (27)

The proof of this lemma is reserved for Section 6.1. Equation (27) is a
(generally non-orthogonal) direct sum decomposition of R(U).

The constrained optimization problem is reduced to a pair of linear equations
as follows.

Lemma 5. An operator X is an optimal reconstruction operator if and only if
X together with an operator C satis�es

XA = PR(A�); (28)

XQ1 = CA�: (29)

In this case the minimum value J0 of J [X] is given by

J0 = �2tr(CPR(A�)): (30)
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The rigorous proof of this lemma is reserved for Section 6.2. It is, however,
worthy to show an intuitive derivation of Eqs. (28) and (29), which provides the
meaning of the operator C in Lemma 5. By using the notion of the Schmidt
inner product hT1; T2i of operators T1 and T2 [20], Eq. (12) can be expressed as

J [X] = �2tr (XQ1X
�) = �2hXQ1; Xi; (31)

which is proved in Section 6.2. If the Lagrange multiplier operator is denoted
by C, then the minimization of Eq. (12) subject to XA = PR(A�) is reduced to
the unconditional problem of variation that minimizes

J [X;C] = hXQ1;Xi � 2<hXA � PR(A); Ci;

where < stands for the real part of a complex number. Equating the partial
derivative of J [X;C] with respect to C and X to zero yields Eqs. (28) and (29),
respectively. That is, the operator C in Lemma 5 is nothing but the Lagrange
multiplier operator.

Lemma 5 reduces a variational problem for the optimal reconstruction op-
erator to an algebraic problem, in which the operator is characterized by using
a pair of linear equations. Furthermore, it is reduced to a single equation as
follows.

Lemma 6. An operator X is an optimal reconstruction operator if and only if
X satis�es

XU = V yA�: (32)

For the solution of Eq. (32) it holds that

XQ1 = (V y � PR(A�))A
�: (33)

The proof of this lemma is reserved for Section 6.3. By using these lemmas,
we shall prove Theorem 1.

Proof of Theorem 1

As shown in the proof of Lemma 6, Eq. (32) has a solution. Its general form
is given by Eq. (21) because of Lemma 1. We shall show Eq. (24). It follows
from Eqs. (29) and (33) that

CA� = XQ1 = (V y � PR(A�))A
�: (34)

Since A�(A�)y = PR(A�), Eqs. (34) and (26) yield

CPR(A�) = CA�(A�)y = (V y � PR(A�))A
�(A�)y

= (V y � PR(A�))PR(A�) = V yPR(A�) � PR(A�)

= V y � PR(A�);
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and, hence, Eq. (24) holds because of Eq. (30).
The optimal estimator of f is directly obtained by f̂ = Xy with X in

Eq. (21):
f̂ = V yA�U yy + Y (I � UU y)y: (35)

Equations (21) and (35) are expressions associated with the orthogonal di-
rect sum decompositionCN = R(U)�R(U)?. Further, R(U) has the (generally
non-orthogonal) direct sum decomposition as shown in Eq. (27). For the decom-
position, we have the following.

Corollary 1. An operator X is the optimal reconstruction operator if and only
if

Xu =

�
Ayu : u 2 R(A);
0 : u 2 Q1R(A)

?:
(36)

Proof. By Lemma 5, it is enough to show that two equations in Eq. (36) are
equivalent to Eqs. (28) and (29), respectively. The �rst equation in Eq. (36) is
equivalent to XA = AyA, which is also equivalent to Eq. (28). On the other
hand, the second equation in Eq. (36) is equivalent to XQ1R(A)? = f0g, which
is equivalent to N (A�) � N (XQ1). This is also equivalent to the fact that for
any �xed operator X, Eq. (29) has a solution C because of Lemma 1. Hence,
the second equation in Eq. (36) is equivalent to Eq. (29).

Corollary 1 shows that the optimal reconstruction operator works as Ay for
elements in R(A). However, although Ay reduces to zero all elements in R(A)?,
the optimal reconstruction operator reduces to zero all elements in Q1R(A)?.
This guarantees the optimal noise suppression ability of the reconstruction op-
erator.

For special A and Q1, the expression of the optimal reconstruction operator
in Eq. (21) becomes much simpler. For example, if N (A) = f0g and Q1 is
nonsingular, then

X = (A�Q�1
1 A)�1A�Q�1

1 ; (37)

which is already described in [16] in the context of Gauss-Markov estimator.
Eq. (37) can be extended to the positive semide�nite Q1 as follows. If

R(Q1) � R(A), then the optimal reconstruction operator is expressed as

X = (A�Qy
1A)

yA�Qy
1 + Y (I �Q1Q

y
1): (38)

The proof of this equation is reserved for Section 6.4. This equation means that
if R(Q1) � R(A), then we can replace U in Eq. (21) with Q1.

Remark The optimal estimator in the sense of De�nition 1 is a special case
of the Gauss-Markov estimator [16]. It is also referred to as the best linear
unbiased estimator (BLUE) [22]. The Gauss-Markov estimator includes several
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parameters. However, since the Gauss-Markov theory is a general theory of
estimation, it cannot specify those parameters. They should be determined for
speci�c applications. De�nition 1 has speci�ed those parameters from the point
of view of the sampling theorem.

So far, the Gauss-Markov theory has given solutions for special cases such as
Eq. (37) [16, 22]. Furthermore, they are not all the solutions, but rather special
solutions. On the other hand, Theorem 1 has devised a general form of the
optimal estimator that is valid even for the singular noise covariance matrix.

4 Sampling Theorem with Optimum Noise Suppres-

sion

If we apply the optimal reconstruction operator given in Theorem 1 to Eqs. (10)
and (11), then we arrive at the following theorem.

Theorem 2 (Sampling theorem with real pulse). Let fungNn=1 be functions
given by

un = ûn + ~un (n = 1; 2; : : : ; N); (39)

where

ûn = V yA�U yen; (40)

~un = Y (I � UU y)en: (41)

Then the optimal estimator f̂ is obtained by

f̂(x) =
NX
n=1

ynun(x): (42)

Since Eq. (21) is a general form of the optimal reconstruction operator X,
Eq. (42) is a general form of the sampling theorem with a real pulse that provides
the optimal estimator in the sense of De�nition 1. That is, by changing Y in
Eq. (41) we can construct all sets of optimal reconstruction functions fungNn=1.

Corollary 2. The optimal estimator f̂ in Eq. (42) agrees with
PN

n=1 ynûn with
probability 1. That is, it holds that

E k f̂ �
NX
n=1

ynûn k
2= 0:
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Proof. Since R(U) = R(A)+R(Q1), it holds that R(A) � R(U) and R(Q1) �
R(U). Thus, it follows from Eqs. (40), (35), (6), and (5) that

E k f̂ �
NX
n=1

ynûn k
2 = E k f̂ � V yA�U yy k2

= E k Y PR(U)?y k
2

= E k Y PR(U)?(Af + ") k2

= E k Y PR(U)?" k
2

= Etr(Y PR(U)?"
 Y PR(U)?")

= �2tr(Y PR(U)?Q1PR(U)?Y
�) = 0:

This establishes the corollary.
Corollary 2 means that f̂ is independent of f~ungNn=1 in Eq. (41) with prob-

ability 1. Hence, from the scienti�c point of view, the set fûngNn=1 plays an
essential role in reconstruction. From an engineering point of view, however, the
redundancy of f~ungNn=1 provides the potential ability to design the reconstruc-
tion functions fungNn=1. That will be discussed in a separate paper.

The matrix U in Theorem 2 is de�ned by using the operator A as shown in
Eq. (22). It can be calculated by using only matrices as follows. Let fv�ng

N
n=1

and fu�ng
N
n=1 be functions de�ned by

v�n(x) = K(x;xn) and u�n = A�1v
�
n; (43)

respectively. Let G be the Gram matrix of fu�ng
N
n=1. Then, it holds that

U = G+Q1: (44)

Indeed, it follows from Eqs. (43) and (7) that

hf; u�ni = hg; v�ni = g(xn): (45)

Hence, by using fu�ng
N
n=1, the operator A is expressed as

A =
NX
n=1

en 
 u�n:

This implies AA� = G, and Eq. (44) holds.
Because of Eq. (45), fv�ng

N
n=1 and fu

�
ng

N
n=1 are said to be the sampling func-

tions with an ideal pulse and a real pulse, respectively. They are unique for any
�xed set of sample points fxngNn=1.

Consider the case that H2 = H1 and A1 = I, where I is the identity operator
on H1. Then, Theorem 2 reduces to the sampling theorem with an ideal pulse.
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In this case, the Gram matrix G of fu�ng
N
n=1 reduces to the Gram matrix of

fv�ng
N
n=1. Since

hv�j ; v
�
i i = K(xi;xj); (46)

the Gram matrix of fv�ng
N
n=1 can be obtained without calculating inner product

of functions.

5 Best Approximation and Interpolation

Remember that gv is the vector whose n-th element is g(xn), i.e., gv = Af . If
we observe the reconstructed function f̂ by the operator A again, then

E(Af̂) = gv; (47)

because of XA = PR(A�). In the noiseless case, Eq. (47) reduces to

Af̂ = gv: (48)

When H2 = H1 and A1 = I, the vector with n-th element f(xn) is well de�ned,
and is denoted by fv, i.e., fv = Af . In this case, Eqs. (47) and (48) reduce to

E(Af̂) = fv and Af̂ = fv; (49)

respectively. These equations imply that f̂ is an interpolation function of fv.
Hence, we call Eqs. (47) and (48) the generalized interpolation property or merely
the interpolation property.

In Eq. (14), we required only the fact that the best approximation PSf to
each f can be obtained from sampled values fg(xn)gNn=1, although we do not
know the original function f . Where does the interpolation property come from?
Is it a desirable property? In this section, we discuss the relationship between the
obtainability of the best approximation and the interpolation property. Since
the noise " has zero mean, Eqs. (47) and (48) are essentially equivalent. Thus,
we concentrate our attention on the noiseless case.

The prime concern in this paper is how to obtain the best approximation PSf
to each f , as mentioned above. Thus, if PSf has the interpolation property, then
Eq. (48) is a desired property. Otherwise it is not, because in that case Eq. (48)
means that f̂ is not the best approximation. In this context, the following lemma
is important.

Lemma 7. Let S be a closed subspace in H1 . For each f 2 H1, the best
approximation to f in S has the generalized interpolation property if and only if

S � R(A�): (50)

The range of A� is the smallest subspace that has the generalized interpolation
property.
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Proof. The generalized interpolation property is expressed as APSf = Af
for any f in H1 . This is equivalent to APS = A, which is also equivalent to
N (PS) � N (A) because of Lemma 1. Taking the adjoint of this equation yields
Eq. (50). Thus, the lemma is established.

Note that Eq. (50) is the opposite result of Eq. (16). Lemma 2 and Lemma
7 have the following consequences:

(1) If S � R(A�), the best approximation PSf to f can be obtained from the
observed vector gv. However, it has no interpolation property.

(2) Conversely, if S � R(A�), PSf has the interpolation property. However,
it cannot be obtained from gv anymore.

(3) Finally, if and only if S = R(A�), PSf can be obtained from gv and has
the interpolation property at the same time.

6 Proofs of auxiliary results

6.1 Proof of Lemma 4

Positive semide�niteness of U and V are clear from their de�nitions. Since

R(U) = R(A) +R(Q1); (51)

it holds that R(U) � R(A), which yields Eq. (25). Since V is self-adjoint and
R(V ) = R(A�), Eq. (26) is clear. Finally, we shall prove Eq. (27) . Since it fol-
lows from Proposition 4.3 in [16] that for a subspace S and a positive semide�nite
operator T

S \ TS? = f0g; (52)

we have

R(A) \Q1R(A)
? = 0:

Hence, it is enough to show that R(A) + Q1R(A)? = R(U). It follows from
Eq. (51) that

R(A) +Q1R(A)
? � R(U):

We shall show the converse. For any u 2 R(A)? \ (Q1R(A)?)?, it follows from
Eq. (52) that

Q1u 2 (Q1R(A)
?) \Q1(Q1R(A)

?)? = f0g:

Then, Q1u = 0 and

R(A)? \ (Q1R(A)
?)? � N (Q1):
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Taking the orthogonal complement of this equation yields

R(A) +Q1R(A)
? � R(Q1):

Then, Eq. (51) yields

R(A) +Q1R(A)
? � R(A) +R(Q1) = R(U):

6.2 Proof of Lemma 5

We �rst show that the system of Eqs. (28) and (29) has solutions. Let

X = V yA�U y: (53)

It follows from Eqs. (23) and (26) that

XA = V yA�U yA = V yV = PR(A�):

That is, X in Eq. (53) satis�es Eq. (28). Since Lemma 4 yields A�U yU = A�, it
follows from Eqs. (22), (53), and (28) that

XQ1 = XU �XAA� = V yA�U yU � PR(A�)A
� = V yA� � PR(A�)A

�;

and, hence, XQ1 = (V y �PR(A�))A
�. This implies that the system of Eqs. (28)

and (29) has solutions with C = V y � PR(A�).

Let X0 be a solution of Eqs. (28) and (29). We shall show that for any X
which satis�es Eq. (28) it holds that J [X] � J [X0]. Equations (12), (6), and (5)
yield

J [X] = EkX"k2 = Etr
�
(X")
 (X")

�
= tr (XE(" 
 ")X�)

= tr (XQX�) = �2tr (XQ1X
�) : (54)

From the de�nition of X0 it holds that

X0A = PR(A�) and X0Q1 = CA�: (55)

Then, Eq. (28) yields

XQ1X
�
0 = X(X0Q1)

� = X(CA�)� = (XA)C� = PR(A�)C
�

= (X0A)C
� = X0(CA

�)� = X0(X0Q1)
� = X0Q1X

�
0

and, hence, XQ1X
�
0 = X0Q1X

�
0 . Since X0Q1X

�
0 is self-adjoint, XQ1X

�
0 is also

self-adjoint and it holds that

X0Q1X
�
0 = XQ1X

�
0 = X0Q1X

�:



SAMPLING THEOREM WITH OPTIMUM NOISE SUPPRESSION 181

Thus, Eq. (54) yields

J [X] � J [X0] = �2tr[(X �X0)Q1(X �X0)
�] � 0: (56)

Then, J [X] � J [X0] because Q1 � 0. That is, X0 is an optimal reconstruction
operator.

Conversely, assume that J [X] = J [X0] for X in Eq. (28). Equation (56)
implies (X � X0)Q1 = 0. Hence, XQ1 = X0Q1 = CA�. That is, X satis�es
Eq. (29). This means that all optimal reconstruction operators are given by
solutions of Eqs. (28) and (29).

Finally we show Eq. (30). It follows from Eq. (55) that

X0Q1X
�
0 = CA�X�

0 = C(X0A)
� = CPR(A�)

and, hence, X0Q1X
�
0 = CPR(A�). This implies Eq. (30) because of Eq. (54)

6.3 Proof of Lemma 6

From Lemma 5 it is enough to show that the system of Eqs. (28) and (29) is
equivalent to Eq. (32). Let X be a solution of Eqs. (28) and (29) with an operator
C. It follows from Eqs. (22), (28), and (29) that

XU = XAA� +XQ1 = PR(A�)A
� + CA�

and, hence,

XU = (PR(A�) + C)A�: (57)

It follows from Eqs. (57), (26), (23), (25), and (28) that

XU = (PR(A�) + C)V V yA� = (PR(A�) + C)(A�U yA)V yA�

= ((PR(A�) + C)A�)U yAV yA� = XUU yAV yA�

= XAV yA� = PR(A�)V
yA� = V yA�;

which implies Eq. (32). This proof also means that Eq. (32) has a solution be-
cause the system of Eqs. (28) and (29) has a solution.

Conversely, let X be a solution of Eq. (32). It follows from Eqs. (25), (32),
(23), and (26) that

XA = XUU yA = V yA�U yA = V yV = PR(A�);

which implies Eq. (28). It follows from Eqs. (22), (32), and (28) that

XQ1 = X(U �AA�) = XU �XAA� = V yA� � PR(A�)A
�

and, hence, Eq. (33) holds. Therefore, if we let C = V y � PR(A�), then XQ1 =

CA�. This implies Eq. (29).
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6.4 Proof of Eq. (38)

In order to prove Eq. (38), the following lemma is used.

Lemma 8. [23] Let T1 be an operator from a Hilbert space H2 to a Hilbert
space H1. Let T2 be a positive semide�nite operator on H1. If and only if
R(T1) � R(T2), it holds

(T1T
�
1 + T2)

y = T y2 � T y2T1(I2 + T �1 T
y
2T1)

�1T �1 T
y
2 ;

where I2 is the identity operator on H2.

Since R(Q1) � R(A), Eq. (51) yields R(U) = R(Q1). Then,

UU y = PR(U) = PR(Q1)
= Q1Q

y
1:

This implies that the second terms on the right-hand sides of Eqs. (21) and (38)
agree with each other.

In order to prove that the �rst terms on the right-hand sides of these equa-
tions agree with each other, let us temporarily de�ne an operator T by

T = A�Qy
1A:

Since Q1 � 0, when R(A) � R(Q1), it follows from Lemma 8 that

(AA� +Q1)
y = Qy

1 �Qy
1A(I +A�Qy

1A)
�1A�Qy

1: (58)

It follows from Eqs. (22) and (58) that

A�U y = A�(AA� +Q1)
y

= A�(Qy
1 �Qy

1A(I + T )�1A�Qy
1)

= A�Qy
1 � (A�Qy

1A)(I + T )�1A�Qy
1

= (I � T (I + T )�1)A�Qy
1

= (I + T )�1A�Qy
1

and, hence,

A�U y = (I + T )�1A�Qy
1: (59)

Then, Eq. (23) yields

V = A�U yA = (I + T )�1A�Qy
1A = (I + T )�1T

and, hence, V = (I + T )�1T . Since T � = T , it holds that V y = T y(I + T ).
Hence, Eq. (59) yields

V yA�U y = T y(I + T )(I + T )�1A�Qy
1 = T yA�Qy

1;

which implies that the �rst terms on the right-hand sides of Eqs. (21) and (38)
agree with each other.
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