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Abstract

Wilson bases are constituted by trigonometric functions multiplied by

translates of a window function that, in turn, is an atom of Gabor tight

frame. We study the Wilson systems with non-classical sign sequences ob-

taining the characterization of the atoms for which these non-classical Wil-

son systems are orthonormal bases. The real-valued functions satisfy our

characterization condition for the classical case. The operator intertwining

the members of the Wilson system formula is constructed explicitly.
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1 Introduction

Gabor systems are time{ and frequency{shifted images of a single function f ,
called atom. Contrary to wavelets, they are known not to be orthonormal bases
as long as atom f has good localization properties (Balian-Low Theorem cf. [2]
and [15] and its recent extensions, e.g., [3]). However, replacing the frequency-
shift (modulation) with multiplication by suitably chosen trigonometric func-
tions yields a Wilson system that under certain conditions is an orthonormal
basis.

Wilson orthonormal bases were constructed by I. Daubechies et al. in [7].
The unconditionality of Wilson systems in the class of coorbit spaces was ana-
lyzed in [8] leading to the construction of Riesz basis for Bargmann space series
in [10]. Generalizations of Wilson bases to non-rectangular lattices are discussed
in [14]. Approximation properties of Wilson bases depend on polynomials they
can reproduce [4]. The applications of cosine-modulated �lter banks were dealt
with in [5], [6]. These �lter banks are also based on Wilson bases.

In [7], where the construction was given, the following theorem (cf. Proposi-
tion 5.2 [7]) is proved, which we quote in a somehow restated version and apply
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not to the original system but rather to its Fourier transform counterpart. So
let M and T be unitary operators in L2(R) de�ned by

Mh(x) = e�ixh(x); Th(x) = h(x� 1) for any h 2 L2(R):

The operators, called modulation and translation, respectively, implement frequency-
and time-shifts on functions from L2(R). Then one has the following.(The ex-
tension starting from \Under the same assumptions. . . " is due to P. Auscher
[1].)

Theorem 1.1 (Daubechies-Ja�ard-Journ�e 1991, Auscher 1994)
If (MmT nf)m;n2Z is a tight frame in L2(R), kfk = 1, and f is real-valued, then
the system composed of (M2mf)m2Z andh

2�1=2(MmT nf + (�1)m+nMmT�nf)
i
n�1; m2Z

(1)

is an orthonormal basis in L2(R). Under the same assumptions, the system
composed of (M2m+1f)m2Z andh

2�1=2(MmT nf � (�1)m+nMmT�nf)
i
n�1; m2Z

(2)

is also an orthonormal basis in L2(R).

The Fourier transform of the system described above contains the factor (T nf +
(�1)m+nT�nf) b(�) = cos(2�n�) bf(�) or sin(2�n�) bf(�) depending on the par-
ity of m + n. Therefore, the Wilson bases have the alternative name of local
trigonometric bases.

In the sequel, we shall refer to the systems like (2) as complementary to
(1). The di�erence is that the sign preceding the second member of Wilson
system formula is di�erent in these cases but independent on m;n. The term
complementary also refers to the fact that from the original Wilson system and
its complementary one can retrieve the original tight frame by a suitable linear
combination of vectors.

If the sign independent of m;n is the same, but the signs before the second
members of the formula di�er between two Wilson systems by the factor (�1)m

or (�1)n, or both, we call such systems modi�ed with respect to each other. In
this situation the formula for the second member of the Wilson system involves a
di�erent inner automorphism of the underlying discrete group and, certainly, the
unitary implementation operator also exists, if it existed for the `non-modi�ed'
case. The approach presented here applies as the interested reader will note the
mentioned link between modi�ed cases presented in this paper himself. To keep
the paper short, clear, and focused we purposefully omitted this and similar con-
nections towards the group and representation theories; so the reader interested
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in such is encouraged to consult [18] or [19] for the more detailed account on the
topic.

Denote by S the set of all vectors f 2 L2(R), kfk = 1 such that (MmT nf)m;n2Z

is a tight frame. For f 2 S it follows that the bound of this tight frame equals 2.
Denote further by W the set of all vectors f 2 S such that the Wilson system for
f is an orthonormal basis. The objective of this paper is to provide a description
of W, where `Wilson system' stands for the classical system (1) as well as for its
modi�cations listed further in the formulae (5), (22), (23). In [1] the character-
ization of W is given for the classical Wilson system and in the present paper
we extend P. Auscher's approach to embrace the non-classical sign sequences.

Despite similarity of results in these two approaches, P. Auscher's approach
(and proof) involves properties of the appropriate Gabor operators when summed
up over all m;n 2 Z, while we use the commutation property intertwining the
single operators in both members of the Wilson system formula. And (unfortu-
nately) there is no easy way to derive his characterization from ours.

Let us stress that we study the Fourier counterpart of the classical Wilson
system investigated in the literature. We bear in mind that it may di�er uncom-
fortably, but all results about being a tight frame with the given bound or an
orthonormal basis are preserved by the Fourier transform as a unitary mapping.
In our approach we explicitly de�ne the operator intertwining the families of
operators, for instance, (MmT nf)m;n2Z and ((�1)mMmT�nf)m;n2Z. This type
of intertwining property has been already analyzed for the classical Wilson sys-
tem in [9, p. 170-171]. The approach presented here, however, does not give
an answer to the question about whether or not there exist smooth, rapidly de-
caying atoms satisfying the characterization conditions for non-classical Wilson
systems.

We start Section 2 with the necessary de�nitions and Theorem 2.1 charac-
terizing W for the Wilson system with the sequence (�1)m replacing the sign
sequence (�1)m+n in (1). Section 3 contains the brief presentation of the Zak
transform and the variant of the characterization obtained by this tool. In Sec-
tion 4 the approach from Sections 2 and 3 is applied to the classical case to
demonstrate that the real-valued functions automatically fall into the set W as
asserted in Theorem 1.1 and to obtain the geometric characterization of atoms
from W obtained in [17, Theorem 25]. Then in Section 5 we describe how to
modify the proof of Theorem 2.1 to cover the remaining cases of (�1)n and the
constant sequence 1. Along with the discussed cases we also develop the char-
acterization whose form is similar to Auscher's in [1] and the characterizations
using the Zak transform. Section 6 contains the extension of the paper's results
to the complementary Wilson systems that are modi�cations of (2).
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2 The Main result

Let C be positive. A sequence of vectors (xn)n2I � H for a countable set I,
where H is a separable Hilbert space, is a tight frame with the bound C if for
all x 2 H X

n2I

j hx; xni j
2 = Ckxk2H: (3)

Fix the sequence of vectors (xn)n2I such that
P

n2I j hx; xni j
2 � Ckxk2; the

frame operator for this sequence is de�ned by

Sx =
X
n2I

hx; xnixn (4)

for all x 2 H. Let J be a unitary operator in L2(R) de�ned by

Jh(x) = h(x� 2[x] + 1)

for any h 2 L2(R), where [x] is the largest integer smaller than x. In the sequel
we consider the frame operator of the system (MmT nf)m;n2Z and will denote it
by S. The frame operator of the Wilson system de�ned as the system composed
of (M2mf)m2Z andh

2�1=2(MmT nf + (�1)mMmT�nf)
i
n�1; m2Z

(5)

is denoted by W . Recall that S is the set of all such unit norm f 2 L2(R) that
(MmT nf)m;n2Z is a tight frame.

Theorem 2.1 Let f 2 S. Then the Wilson system (5) is an orthonormal basis
in L2(R) if and only if

8m;n2Z



Jf;M2mT 2nf

�
= 0 (6)

for all m;n 2 Z.

In the proof of Theorem 2.1 we shall use the following.

Lemma 2.2 The operator J is of order 2 and satis�es

JMmT n = (�M)mT�nJ: (7)

Proof of Lemma. Both operators T and J act by transforming the function
domain; so let us introduce two mappings t; j : R ! R, namely, tx = x � 1,
jx = x�2[x] + 1. Fix now x 2 R. Then t�1jx = t�1(x�2[x] + 1) = x�2[x] + 2.
Also jtx = j(x� 1) = x� 1� 2[x� 1] + 1 = x� 2[x] + 2. Hence, t�1j = jt and
T�1J = JT . On the other hand,

JMf(x) = e�i(x�2[x]+1)f(jx) = �e�ixf(jx) = �MJf(x):

So, JM = �MJ and JMmT n = (�M)mT�nJ . �
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Note that in the above de�nitions of the operator J and the mapping j we could
use the formulae with any odd integer n,

jx = x� 2[x] + n; Jf(x) = f(jx) = f(x� 2[x] + n):

For convenience we stick to the above choice of n = 1.

Proof of Theorem 2.1. Let us prove �rst that the Wilson system (5) is a tight
frame with bound 1. Reasoning as in Lemma 5.3 [1] (cf. also Lemma 8.5.2, [9]),
it is equivalent to

2W � S =
X


� ; (�M)mT�nf
�
MmT nf = 0; (8)

since S = 2Id. Indeed,

2Wh =
X
m2Z

X
n�1



h;Mm(T nf + (�1)mT�nf)

�
Mm(T nf + (�1)mT�nf)

+2
X
m2Z



h;M2mf

�
M2mf =

=
X
m2Z

X
n6=0

hh;MmT nfi MmT nf +
X
m2Z

hh;MmfiMmf +

+
X
m2Z

X
n6=0



h; (�1)mMmT�nf)

�
MmT nf +

X
m2Z

hh; (�1)mMmfiMmf =

= Sh +
X

m;n2Z



h; (�1)mMmT�nf)

�
MmT nf:

See also the detailed discussion of this type operator R in [9], p. 170-171.

Using Janssen's theorem ([13], sec. 1.4.1), we obtain the polarization

X
m;n2Z

h � ;MmT nf1i M
mT nf2 = 2

X
m;n2Z



f2;M

2mT 2nf1
�
M2mT 2n: (9)

We can relax the requirement of condition (A) (cf. [13]), since to assure the
convergence of operators in the weak sense it suÆces to consider the vectors in
the dense subspaces of L2(R) where the condition (A) holds.

Inserting (7) into (8), we have by the polarization (9)

2W � S =
X


� ; (�M)mT�nf
�
MmT nf =

=
X

h � ; JMmT nJfi MmT nf =

=
X

hJ � ;MmT nJfi MmT nf =

= 2
hX


f;M2mT 2nJf
�
M2mT 2n

i
J:
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So condition (8) holds if and only if
�P


f;M2mT 2nJf
�
M2mT 2n

�
= 0. Using

Janssen's representation [13, sec. 1.4.3], we immediately get that it is equivalent
to

8m;n2Z



Jf;M2mT 2nf

�
= 0: (10)

The orthonormality follows from the fact that the Wilson system vectors are
of unit length. Certainly, kM2mfk = 1. Also,

kMmT nf + (�1)mMmT�nfk2 = 2 + (�1)m 2<


T 2nf; f

�
;

where <z stands for a real part of the complex number z. From the Wexler-Raz
Identity [16]



T 2nf; f

�
= 0 for n � 1, because (MmT nf)m;n2Z is a tight frame

with bound 2. So

2�1=2
�
MmT nf + (�1)mMmT�nf

�
is of unit length. �

The below characterization is similar to the characterization by P. Auscher in
[1, Eqn. (5.5b)].

Proposition 2.3 The condition (6) is equivalent to

En(x) =
X
k

f(x� k � 1) f(x� 2n + k) = 0 (11)

for almost all x 2 [0; 1] and for all n 2 Z.

Proof of Proposition 2.3. Indeed,



Jf;M2mT 2nf

�
=

Z
R

[Jf ](x) e2�imxf(x� 2n) dx =

=

Z
R

f(x� 2[x]� 1) e2�imxf(x� 2n) dx =

=

Z
[0;1]

X
k

f(y � k � 1) e2�imyf(y � 2n + k) dy =

=

Z
[0;1]

X
k

f(y � k � 1) f(y � 2n + k) e�2�imy dy:

Thus, (6) holds if and only if

En(y) =
X
k

f(y � k � 1) f(y � 2n + k) = 0 (12)

for almost all y 2 [0; 1] and for any n 2 Z. �
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3 The Zak Transform Approach

To obtain yet another version of this characterization we will use the Zak trans-
form. Let Z : L2(R) ! L2([0; 1)2) be the Zak transform with parameter 2 (for
the detailed discussion of properties and applications of Zak transform see, for
instance, [11] - [13], [20]) de�ned as:

Zf(t; !) = 21=2
X
n2Z

f(2(t� n))e2�in!

with the following quasi-periodicity properties:

Zf(t+ 1; !) = e2�i!Zf(t; !); Zf(t; ! + 1) = Zf(t; !):

Zak transform has the following properties for operators M2 and T 2:

Z[M2f ](t; !) = e4�itZf(t; !); Z[T 2f ](t; !) = e�2�i!Zf(t; !):

Applying this to the both factors of the inner product in the characterization
condition (6), we obtain by the unitarity of the Zak transform that (6) is equiv-
alent to

8m;n2Z

Z
[0;1]2

Z [Jf ] (t; !) e4�imt e�2�in! Zf(t; !) dt d! = 0

or

Z [Jf ] (t; !) Zf(t; !) + Z [Jf ] (t + 1
2 ; !) Zf(t+ 1

2 ; !) = 0

for almost all (t; !) 2
�
0; 12

�
�
�
0; 1

�
. One directly veri�es then that

Z [Jf ] (t; !) = Zf(�t; 1� !);

for t; ! 2 [0; 1], where �t = t� [2t] + 1
2 , and that � cycles the points t and t + 1

2
for any t 2

�
0; 12

�
. Summarizing,

Proposition 3.1 The condition (6) is equivalent to

Zf(t; !) Zf(t+ 1
2 ; 1� !) + Zf(t + 1

2 ; !) Zf(t; 1� !) = 0 (13)

for almost all
�
t; !

�
2
�
0; 12

�
�
�
0; 1

�
.

4 The Classical Case

The classical Wilson system (1) is modi�ed with respect to (5). Below we show
a small modi�cation of the proof of Theorem 2.1 leading to the characterization
result in this case.
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Theorem 4.1 Let f 2 S. Then the Wilson system (1) is an orthonormal basis
in L2(R) if and only if

8m;n2Z



MJf;M2mT 2nf

�
= 0: (14)

Proof of Theorem 4.1. Replacing J with MJ , we obtain an analogue of identity
(7), namely,

(MJ)MmT n = (�M)m(�T )�n(MJ): (15)

The appropriate characterization formula takes the form

8m;n2Z



MJf;M2mT 2nf

�
= 0: (16)

�

P. Auscher's approach (and proof) involves properties of the appropriate one-
dimensional projections onto the atom's images under the Gabor operators when
summed over all m;n 2 Z and yields { for the Fourier counterpart of the Wilson
system we are using { the formula involving the inversion mapping if(x) =
f(�x). Since we work on other side of the Fourier transform we do not have
this inversion e�ect.

Proposition 4.2 The condition (14) is equivalent to

En(x) =
X
k

(�1)k f(x� k � 1) f(x� 2n + k) = 0 (17)

for almost all x 2 [0; 1] and for any n 2 Z.

Slightly developing the argument from Proposition 3.1 we can obtain the follow-
ing characterization of the classical case which also immediately demonstrates
that in this case the real-valued atoms yield Wilson orthonormal bases. Indeed,
for such atoms condition (18) is par force satis�ed.

Proposition 4.3 (cf. Theorem 25, [17]) The condition (14) is equivalent to

Z [=f ]
�
t; !

�
Z [<f ]

�
t + 1

2 ; !
�

= Z [<f ]
�
t; !

�
Z [=f ]

�
t + 1

2 ; !
�

(18)

for almost all (t; !) 2
�
0; 12

�
�
�
0; 1

�
, where <z and =z denote, respectively, the

real and imaginary part of z 2 C .

We can restate this result in the more geometric language of Theorem 25
from [17] saying that if T is a mapping from L2(R) into L2([0; 12 ) � [0; 1); C 2 )
de�ned by

T f(t; !) =
�
Z f

�
t; !

�
; Z f

�
t + 1

2 ; !
��
;
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then f is an atom of the Wilson orthonormal basis if and only if the points
(0; 0), T [<f ](t; !), T [=f ](t; !) are colinear for almost all (t; !) 2

�
0; 12

�
�
�
0; 1

�
.

Note that, in the similar language, the atoms f 2 S are characterized by the
property that the points T f(t; !) lie on the unit sphere S1 in C 2 for almost all
(t; !) 2

�
0; 12

�
�
�
0; 1

�
, where

S1 = f(z; w) 2 C
2 : jzj2 + jwj2 = 1g:

Proof of Proposition 4.3. Let t 2
�
0; 12

�
, ! 2

�
0; 1

�
. Then the characterization

condition (14) turns into

Z [MJf ] (t; !) Zf(t; !) + Z [MJf ] (t + 1
2 ; !) Zf(t+ 1

2 ; !) = 0:

Since the image of f under the operator M is mapped by Zak transform to

Z[Mf ]
�
t; !

�
= e2�itZf

�
t; !

�
; (19)

reasoning as in Proposition 3.1, we obtain

Zf(t; !) Zf(t + 1
2 ; 1� !) = Zf(t+ 1

2 ; !) Zf(t; 1� !): (20)

Using the identity Zf(t; 1� !) = Z f (t; !), we obtain

Zf(t; !) Z f (t + 1
2 ; !) = Z f (t; !) Zf(t+ 1

2 ; !): (21)

Now since Z is linear and for any complex numbers z; w it holds that

z w = z w , =z <w = <z =w;

one gets the equivalence of (21) to (18). �

5 Other Modi�ed Systems

There are two remaining modi�ed Wilson systems, namely:

1. the system composed of (Mmf)m2Z andh
2�1=2(MmT nf + (�1)nMmT�nf)

i
n�1; m2Z

; (22)

2. the system composed of (Mmf)m2Z andh
2�1=2(MmT nf + MmT�nf)

i
n�1; m2Z

: (23)
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Replacing J with MTJ and TJ , we obtain the analogues of identity (7):

(MTJ)MmT n = Mm(�T )�n (MTJ);

(TJ)MmT n = MmT�n (TJ);

which by the reasoning similar to this in the previous sections give the charac-
terizations in terms of inner products, of En functions, and of Zak transforms.

Corollary 5.1 Let f 2 S. Then the Wilson system (22), respectively (23), is
an orthonormal basis in L2(R) if and only if

8m;n2Z



MTJf;M2mT 2nf

�
= 0; (24)

respectively

8m;n2Z



TJf;M2mT 2nf

�
= 0; (25)

holds.

Corollary 5.2 The condition (24), respectively (25), is equivalent to

En(x) =
X
k

(�1)k f(x� k) f(x� 2n + k) = 0;

respectively,

En(x) =
X
k

f(x� k) f(x� 2n + k) = 0

for almost all x 2 [0; 1] and for any n 2 Z.

Corollary 5.3 The conditions (24), respectively (25), are equivalent to

e�2�i! Zf(t; 1� !)Zf(t; !) + Zf
�
t + 1

2 ; 1� !
�
Zf(t+ 1

2 ; !) = 0

and

e�2�i! Zf(t; 1� !)Zf(t; !) � Zf
�
t + 1

2 ; 1� !
�
Zf(t+ 1

2 ; !) = 0

for almost all (t; !) 2
�
0; 12

�
�
�
0; 1

�
, respectively.

Proof follows from the combination of the below properties of Zak transform and
of operator J :

Z[TJf ]
�
t; !

�
= e�2�i!Zf(t; 1�!); Z[MTJf ]

�
t; !

�
= e2�ite�2�i!Zf(t; 1�!);

Z[TJf ]
�
t+ 1

2 ; !
�

= Zf
�
t+ 1

2 ; 1�!
�
; Z[MTJf ]

�
t+ 1

2 ; !
�

= �e2�itZf
�
t+ 1

2 ; 1�!
�
:

�
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6 Complementary Systems

The complementary Wilson system has the same properties as the original one.
The results of the paper, in particular, Theorems 2.1, 4.1, and Corollaries 5.1, 5.2
remain true for the complementary Wilson systems such as (2) and the systems
de�ned as:

1. the system composed of (M2m+1f)m2Z and

h
2�1=2(MmT nf � (�1)mMmT�nf)

i
n�1; m2Z

; (26)

2. the system composed of (Mmf)m2Z and

h
2�1=2(MmT nf � (�1)nMmT�nf)

i
n�1; m2Z

; (27)

3. the system composed ofh
2�1=2(MmT nf �MmT�nf)

i
n�1; m2Z

: (28)

For instance, in the case of the system (26) we obtain that

2W � S = �
X


� ; (�M)mT�nf
�
MmT nf;

which is null if and only if (6) holds by exactly the same argument as in the
proof of Theorem 2.1.

Corollary 6.1 Let f 2 S. Then the Wilson system (2), respectively (26), (27),
(28), is an orthonormal basis in L2(R) if and only if (14), respectively (6), (24),
(25), holds.
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