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The Shannon Sampling Theorem—Its Various
Extensions and Applications: A
Tutorial Review

ABDUL J. JERRI
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1. INTRODUCTION

HE SAMPLING theorem that we wha!l discuss in detall
II was introduced by Shannon [1] to information theary.
- However, the interest of the communications engineer
in the sampling theorem may be traced back to Nyquist 12].
As we shall see in Section 11 this theorem was originated by
both E. T. and J. M. Whittaker [3]-[5) and Ferrar [6], even
though some attribute it to Cauchy [7,p.41]. In the Russian
litersture this theorem was introduced to communications
thoory by Kotel'nikov (8], and took its name from him as
opposed to Shannon, the Whittaker, or popular sampling
theorems in the English literature., In what follows we will use
cither one of the nbove reforences or, in brief, we will use WKS
sampling theorem after both Whittakers, Kotel'nikov, and
Shannon. We will do this with every sampling theorom thut
involves # band-limited signal, i.¢., represented by a finite limit
(truncated) inverse Fourier transform. WKSK will stand for
Kramers's [9] and Weiss' [10] generalization of the sampling
theorem which invalves more gonersl integral transforms than
the ususl Fourisr transform. Attention should be given to the
minor variations in the definition and/or the alternate use of
the Fourier transform and its inverse.
As we shall illustrate in the following sections, the principal
fmpact of the Shannon sampling theorem on information
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theory is that it allows the replacement of a continuous band-
limited signal by & discreto sequence of its samples without the
loss of any information. Also it specifies the lowest rate (the
Nyquist rate) of such sample values that is necesary to repro-
duce the oniginsl continuous signal.

We may stross here that the Shannon sampling theorem and
most of ity extensions are stated primarily for band-limited
functions instead of random processes which are more relevant
to the information theorist. However, and as we shall see in
Saction 1-D-2, most of these sampling expansions can be
extended ¢asily to random processes.

1t ks our intention to include all possible relevant contribu-
tions in communications, mathematics, and other fields, a task
which we hope ta give the justice it deserves. To this end we
have attempted to include an exhaustive hibliography to help
the and the interested reader of various disciplines
(see [205]-1248]). We will sttempt, whenever possible, to
unite the different notations used, but attontion should be
given to such differences, especially when we guote certuin
detailed results such as estimates of vArious SrTors.

A. The Shunnon Sampling Theorem

Shannon’s ortginal statzmeant {11 of the WKS sampling
theotem is the following.

Theorem F-A-1; “If a function £(t) contains no frequencies
higher than W cps it s completely determined by giving its
ordinates at 4 series of points spaced (1/2W) & apart,” Shan-
non's prool stsrts by letting
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since F{w), the spectrum of (1), is assumed to be zero outside
the band (- 2nW, 2nW), The Fourier series expansion of F(w)
on the fundamental period ~2aW <w <2mWis
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We note that the Fourier coefficient ¢, Is proportional to
f(n[2W), the sample of the signal £(1). Also, {cn ) dotormines
F(), hence, by the uniqueness property of the Fourier trans-
form, /(1) Is determined. Shannon then constructed f(f) as
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the sampling seties
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sin w(AWe - »)
w(2Wr-n) )
This result is eunily established when we use tho Fourier ex-
ponential serios (2) for F(w) in (1), exchange the integration
and summition, and use (3), We will see in Section 11-C that
the outline of this proof and the method of constructing A
ax in (4) is paraliel (o the work of I M. Whittaker [4]. Infact,
Shannan introduced the physics of time und frequency to the
second part of Theorem [1C-1, where (4) is Whittaker's
cardinal series. This celebrated theorom, with same variations
from the abovementionsd Shannon statement, is discussed
bricfly in & number of texts [11]1-[19] In the Feld of com-
munications with some detalled ilustritiona. In the Japunese
literature, Someys [19] discussed the sampling theorem at
about the same time Shannon did (1], The vasiations in the
proofs center around different methods of manipulation tn
Fouriar anatysis, contour infegration, and matrices.

Due to the symmetry of the Fourier transform pairs, the
sampling theorem is also valid Tor time-limited functions, L.,
for Fiw) the Fouriet transform of & function J(1) wehich i
zero for 8| > T

F(u)- i F’(._. E_‘M (5)

e \T[ (Tw-am) :

8. Syatews Interpretation Time-Invariant Systems

Reea (11, p. 305] gave the following physical interpreis
tion to Shannon's (WKS) sampling theorem. Suppose that
f(r) representy & continuous band-limited voltage signal. Thin
T(¢) can be samplod ot times {n/2W}, n=0, F1, 2, ".
Here k()= (in 2nWr)f(wt) in known to be the fimplilse
response of an ideal low-pass filter with system function & (w2)
atid frequency cutoff at 2o (Fig. 1), So f{r) of (4) will be
the output of such = filter with input taken to be the pulse
wrain defined by the ssmples [/(n/2W))} as shown in Fig. 1.

As we will sse in Section TV-1, Papoulis [ 131, [14] later £x-
tended the WKS sampling theorem in such a way that he ob-
tained a phynical Interpretation with more rolsxed conditions
on the filter (Fig 2) and with s recogaizable pulse as input
rather than the unattainable jmpulse, The relaxation of the
filter's condition will result in an error that can be minimized
by mmpling al s rate higher than the Nyquist rate of (4) {sce
Section IV4)

1. T ORIGIN OF SHANNON'S SAMFLING THEOREM ~
INTERFOLATORY FURCTIONS

In thix section we review the theory of interpolatory fumc
tions, since this is where the Shannon (1] sampling theorem
atiginated. Ax such we intend to show thut it 1s also hure that
the Weiss [10] and Kramer [9] generatization of the above
simpling theorem Lo other integral trenuforms besides the
Fouriet one cmérged ss a natural extension.

A. The Cardinat Seriez

E. T. Whittaker (3] set out to find an snalytic gxpression
for & function when the values of the function sre known for
equidistant values a, @ +w, - @t aw, of Ity urguiment and
sugh that this expression is free of fleriodic components with &
periced less than 2w. This functim was called the Cardins!

#
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Fig, 2. A mbre practicsl aystom function for = filter of & sampling
' expsnsion.

Funertom. He showed that this anslytic expresion is pot only
an interpolatory expression but & repressotutive ohe as well.
At this poinf, we msy say that the sampling thearem of Shan-
non had its onigin, The first thing we potice is that Whittaker's
problem i concerned with equally spaced values of the argo-
rent %o n peciodic function is sxpected. Whittake: congdered
the tabulated values of the function f(2), Le., f(8), fle + W),
<<+, f{ + nw), and derived the final form of the cardinal fanc-
on as

ﬂn-'-(f-c-mv)

Z [la +aw)

(6)
—=(t-e~nw)
-

We fote that this cardinal series iv the one Shannon used for
his sampling {hears and is what is scmetimes called the
Whittaker sampling théorem. Thero are two references here,
ta E. T. Whittaker (3] knd J. M. Whittaker (4], [S]. This
may be due to the fact that the final statement of the above
sampling theorem (n terms of band-limited signals in very
cluse 10 the mare refined stutements of J. M. Whittakar I5.p:
68) concerning the rolation between the cardinal senes (6) nnd
the truncated Fourier integral (1), The most complate recent
treatment of Whittsket's cardinal function as a mathematical
tool was given by McNamee, Stanger, and Whitney [201].
They linked the cardinal function to the central differance
through their w«mammmmuowmwdmd
funciion provides a lnk bepween the Fouricr series and
Fourer integral. Finally, they showed that the cardingl fune-
ticn cun bo used for solving integral equations, Very recontly
Stegner [211 used Whittaker's cardinal function to detive
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various types of very accurate approximation procedures,
along with error bounds, for interpolating, integrating, and
eyaluating the Fourier and the Hilbert transforms of functions,

B, Suggertions for Other Series

At this point it is not surprising that we raise the question:
“Is it possible to condider some expression resembling the
cardinal form that deals with the samples of a function at nan-
equidistant values of its argument, say {1,}?" To follow the
same procedure we know that sin Az is the simplest periodic
function with period (27/A), so for our case we svoid it and
try a mote general kernel X (A, #) with a sampling function

Salt) =8, 1) (7

where S(ty, tm) ™8y m. The explicit expression for such a
$a(t) is piven by Kramer [9] for the generslized sampling
theorem for any choice of K\, 1) as an orthogopal set on
[#, #). So wo can regard Kramer's generulization as a natural
extension of Whittaker's work and the popular sampling
theorem,

C. The Cardinal Series and the Fourier Integral

In this section we will discuss J. M. Whittaker's [4] impor-
tant development toward what we now know as the Shannon
sampling theorem. In particular, his explicit theoyem involves
the cardinal series and Fourier and Fourler-Stieltjes integrals,
Hence, he came the closest to the present statement of the
sampling theorem as it ia given in terms of 5 band-limited
xignal (Le., & truncated inverse Fourier trungform). §. M. Whit-
taker's {4, Theorem 2| theotem is the following.

Theorem 1F-C-1: “1f the series

o~ Janl +la_nl
Z sl . BB i LA

n

(8)

n=\

converges, the curdinal series

e |

n=\

C(I)'ﬂnn{

w

- +—'J-]} ©)

x-n x+%n

is sbsolutely convergent, and its sum is of the form

}
f [cos mxr dF (r) + sin mxr 4G (1)] (10)
)

where F, G are continuous functions. Given any function j(x)
of the form of (10) the series

.. {’(°)+ 3 0" [f—(")- oL")]} (N

n x ot x-n XxX+n

is (C, 1) summable to f(x)." The (C, 1) here stands for
“Cegdro summubility” where, according to s theorem dus 1o
Hardy [22), this means that the series (11) converges if f(n) is
bounded (see Section V-1).

Previously Ferrar [6] gave the following theorem, which we
consider to be even closer to Shannon's original statement of
the sampling theorem,

Theoren 11-C-2; “I Tpw.w ltxl? 18 cotivergent, p > 1, and
C(x)is defined by

- - 0
C(x)sdnn Z -1, (12
e =
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then

=1D"C +a)

sinwix - b) =
Z x-b-n

w

Clx) (13)

where {a,} € I, implies that the series in (12) and (13) are con-
vergont.” Here {a, } €/, means that the series Tya - lagl® is
convergent. We also note that, by Hardy’s thearem, for C(x)
as (C, 1) summuble to be convergent we nead a,f{x = n)=
0(1/n), Le., if C(b+ n) is bounded. Ferrar called this the con-
sistency of the cardingl seriér. This corresponds 1o the ropre-
sentation of the sampling theotem as compared to the inter-
polation only, in the case of interpolatory theory. Again,
J. M. Whittaker nxterted that, given a sequence g, &y, "' ' ' , 8y,
<+« of real numbers, then the series (cardinal) of type (11),
convergent or {C, 1) summable, affords 8 means of defining
the trigonometric integrals associated with the Fourier and
Fouriar-Stieltjes series, respectively. For example

c(x)= f [(x) cos xr dt (14)

where f(x) is represented by the Fourier series and 2(x) by the
cardinal serics. Hers, we are led to the truncated Fourier
cosine integral in (14). At this paint we note that the above
statement ix another, more precise statement of what E. T,
Whittaker had started, with almost everything centered around
the cardinal series.

Now we may raise a question of a different nature which ks
still aimed at tying the Kramer generalization of the sampling
theorem to a common origin with the Shannon sampling
theorem and, hence, is 4 natural extension of the latter, This
question is, “What kind of integral representation would a
sories other than the cardinal series offer?” Asan example, it
is sufficient to consider the Bemel function Ju, (x7), of the first
kind of order m, instead of sin xf. J. M. Whittaker [S,p. 7i]
came close to touching the question of the generalized sam-
pling oxpansion when he considered the general partial frac-
tion series S, p. 64]:

f(-ca) ] }
Hiey )z +¢4)
(15)

where the ¢y, c3, " 7, is a strictly increasing sequence of posi-
tive numbers such that X 5-; ¢ converges and

e =z [] (l--:-:-).

H(z)- {%0) * f:

n=i

[ J(ey)
H'(en)(z - e4)

(16)

In addition, he noted that Theorem [1-C-1 does not apply to
(15) in general, but to the special case H(z)=sin wz and ¢, =
nm, 2= ¢x, #a the cardingl series is in terms of {sin amx}, an
orthogonal set of functions relative to its zeros in [0, 1]. At
this point he hinted that a theorem similar to Theorem I1-C-1
holds if ¢, = 1., the zeros of Jo(z), the Bessel function of the
first kind of order xero, and H(z)=2/(2) [in (15)]. So,
Hixc,) is the orthogonal set relative to its zoros with a weight
function p(x)=(1/x). It i then no surprise to find the Bessel
functions among the first examples of the gencralized ssmpling
theorem (Section I1I-A), where we accept the theorem us the
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natursl extession of the work of Ferrar i6] und both Whit-
takers (3]-151, and different than thoir cardinal yeries.

One sdvantage of using the finite Bessel (Hanked) transform
iz that the n-dimensional Fourier wransform, with circular
symmetry, is reduced to Jq i3 {(x)~ Beasel transform [23] [sce
29)1.

D. The Sampling Theorem and Interpolation

Jagerman and Fogel [24) considered the WKS sampling
thecrem as an interpolation formuls, then stated and proved a
sumber of interesting extensions. They first considered the
Lagrange interpolation polynomisl [25]

1)

’ . 7
(e e (y) a2

Palt)=2a(0) 3
i

)= 0

then cxtended the real varisble 1 to a complex variable 2. Note
that (17) is the partial fraction expansion of J. M. Whittakes's
equation (15). Here (Pa(2))(5a(2)) is analytic excopt at the
zetos of ga(z), the sampling points, and Fu(z) is entire, Le.,
analytic everywhere, This was generalized to include an in-
finite number of sampling points. The choice for g(z) was
obviowly g{z) = =in (nz/h), 0

w (=1}
ro=sa 1))

_— (18)

J=-

is the cardinal series for the entirc function P(z). The sample
points are uniformly spaced on the complex plane. We remark
here Mammmmdcufmx(x)wouldbolhmcdm
such as J,,,(z), where the sample point distribution would be
ssymptotically uniform. For their choice of g,(), thoy stated
und proved & pumber of basic extensions of the WKS sampling
theorem, using the method of contour integration and the
Paley-Wiener theorem [26, p. 13) which states the equiva-
lence botween band-limited functions and square integrable
functions of exponential type. Then they extended these
smpling theorems to include the samples of the [unction
£(jh) and its derivative £'(jh), an important extension which
mmntndoacwmwsumlll.udwhichm
will discuss in detail in Section IV-B.

L. Tyt GENERALIZED SAMPLING THROREM

In Mmmwﬁﬂmmm&nlhaofsm-
non's sampling theorem to include more genera), finjte Limit
(truncated) integral transforms besides the usual Fourier trans-
form. In Section 11-C we indicated bow Whittaker [S] bad
suggested & sampling serics for a finite limit integral transform
with the Bessel function, instead of the exponential function,
25 ity kernel. The first pemeralization that followed in this
direction wan considered by Weiss (10] for transforms with
kernels which are solutions of the Sturm-Liouville problem
asmsocisted with second-order differential cquations [27],
Kramer [9] followed this by a detailed treatment for nth-
order differential equations und illustrated it for the cuse of
the Bessel function a2 & kernel,

In the following, we will give the statement of the gen-
eralized sampling theorem with various illustrations, compare
it to Shannon’s sampling theorem, present its physical inter-
pretation in terms of timevarying systems, and then discuss its
various extensions and applications. As we mentioned in the
beginning of Section 1, we will refer to this generalized
theorem as the WKSK sampling theorem, after both Whittakers
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{31-15], Kotel'nikov (8], Shannon (1], and Kmmer (9] as
compared to WKS for the Whittakers’, Kotel'nikov’s, and Shan-
non's popular sampling theorem.

A. The Sampling Theorem for Hankel (Bessol) and Other
Finite Limit Integral Tranzforms

The final generalization of the ssmpling theorem was stated
by Keamer [9] as the fallowing theorem.

Theorem 1i1-A-1: *Lat 1 be an interval and L3 (/) the class of
functions ¢ (x) for which fi¢(x)|? dx <=, Suppose that for
each real ¢

I(f)’fﬂ,r. thglx) dx (15))]
!

where g(x)€ L3(/). Suppose that for each real ¢, Kix,NE
L4(7), and that there exists a countable sot E' = {t, ) such that
{K(x, t4)} is a complete orthogonal set on /. Then

fio)=lim 3 [(t,)5.(0 (20)
N== 1ni<N
whaere
K{x, )K(x, 1) dx
Su{0)=8(, 15)= d 2 1)

f[K(xc 'ﬂ)“ dx
I

Here g(x) € L3 (f) means that g(x) is Lebesque measurable and
that Jj lg(x)|? dx <=, Alio K(x, 7) is the complex conjugate
of K(x, t). The simplest proof s readily established whea we
write the orthogonal expansion for g{x) in (19) in terms of

Kix,1a)
()= 3 caklx, ta) (2)
mml
f 2K x, 1) dx )
d {Us @3

€= = :
flK(x. to)l? dx flK(x.f.)P dx
T /

Then multiply both sides of (22) by £ {x,t) and formally inte-
grate term by term to obtain

Jltx) fK(x‘ 0OK(x, 1) dx
- 1

b5
f 1K (x, ) dx
I

n=l
((19)-(20)1

f Kix,Nglx)dx =)=
1

= i 16)Sul)

ne=l

after using (19) for f(r) and (21) for the sampling function
5,(r), or what we sometimes write as 5(t, ty). We may men-
tion here that a weighting function p(x) may be introduced
{271, 128] in the integrals of (19) instead of having it implicit
in the product K(x, f)g(x). Also we indicate that the same
proof can be followed when K (x, £) of (19) is expanded in
terms of the ssme orthogonal functions Kix,1,). However,
the shortest proof is 1o use Parseval's equation {291 for the
integral in (19) with the Fourier coefficients ¢y of (23) and

____—d
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Sulr) of (21) for g(x) and K (x, 1), respectively (see Séction
V-A).  Kmamer [9] showed that the conditions for this
theorem on the kernel K(x, ¢) in (19) are exhibited by the
solutions of nth-order self-adjoint differential eguations [27,
p. 188, p. 284]. He illustruted it for the cases when Kz t)=
! and when K(x, 1) =7, (xt), whete J,,(xt) is the Bessel
function of the first kind of order m. Campbell (28] illus-
trated the case when K(x,()=P,(x), where P,(x) is the
Legendre function. Other illustrations including K'(x, 1) ax the
associsted Legendre, the Gegenbaner, the Chebyshev, and the
prolate spheroidal functions [30] were done in detail in [31]
with suggestions for their use in scattering problems in physics,
A recent illustration for K'(x, 7) as the associate Laguerre func-
tion L7(x), but with an integral defined on the semi-infinite
interval (0, =) instead of the usual finite Interval, is found in
132]. As an illustration of Theorem II-A-1, we present the
case of the finite limit J,,, -Hankel, or Bessel, transform

i
= f X (ROOF () div. (24)
0

The sampling function S,(r) of (21) is derived an

|
X (<M o (X by ) X
Sal) =S, b, ) = ——

[T (x1))? dx
(]

mm,r'm.(')
(';.l E ’,)Jmol('n,n)

where the (f,; , } are the zeros of the Bessal function I e,
Juiltm w)=0,n=1,2,++. Here the familiar propertics of
the Bessel functions were used [33] to evaluiate the integrals
of (25). The final sampling series (21) Tor the finite Lmit
Hankel transform becomes

(25)

- -
[O=F [ty ) ——rtsnen () (26)

nel (i = ¥ ess (Fm,n)
Iy () =0, = 1,2, 5

We note bere that the weighting function p(x) = v has been
introduced explicitly in (24) instesd of having it implicit in the
product K(x, t)g(x) of (19).

8. On the Equivalence of the Generdlized (WESK) and
Shannon (WK S) Sumpling Theorems

The first question related to the generalized sampiing theo-
rem was saised by Campbell [ 28] concerning the possibility of
applying Shannon's sampling theorem to functions that can be
sampled by the gencralized sampling theorem, He considersd
as kemels in (19) the solutions of regular first-order and
regular second-order differentinl equations with separated
boundary conditions, and the solutions of the singulur Besssl
and Legendre equations. For these cases Campbell showed
that if a function with such kernels can be expanded by the
use of the WKSK sampling theorem, then it can also be ex-
panded by the use of the WKS sampling theorem, These
results were oxtonded [34] to include integral transforms with
kernels such as the following: P}" (x), the associated Legendre
function; C¥(x), the Gegenbauer function; U¥(x), the Cheby-
shey function of the second kind; and other functions. For
example, in the case of the finite Gegenbauver transform:
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1
(D)= f CH(x)F(x) dx (27)

we can use the integral representation of C}(x) 133, p. 159,
equation (27)] as a truncated Fourier transform in (27), then
interchange the order of integration and define H{u) in a
simple way to obtain

To+w) F

itu
PG _'t Hlu)du (28)

fu)

so the function (I'(¢ + 1Az + 28)) /(1) and hence f(r) may
be sampled by the WKS sampling theorem. To compare the
two sampling thearems in a more precise way, some defini-
tions were presented and conditions were found {34} under
which the two sampling theorems, namely, the Shannon and
the generalized one, are equivalent. In summary, the theorems
presented in [34] simply tell us that there is no advantage in
using the WKSK sampling theorems when the functicn is
represented by a double inwerse Fourler transform with finite
limits, This, however, 15 the case only when we assume that
the communications engineer ix intercsted in working with no
imtegral transform other than the Fourier one. So the advan-
tage of the WKSK sampling theorem may bocome clear when
we consider other integral transforms [35), [36] and espe-
cially for time-varying systems [37] which we shall discuss in
the following section. One other obviaus advantage is the use
of the Hankel transform in optics [14] whete, with circular
symmetry, a Jo-Hankel transform s equivalent to a double
Fourier transform and, in general, a Jimy1y-1-Hankel trans-
form is equivalent to an m-dimensional Fourier transform
[23,p.82]):

PV E(p) = r P Va1 (pddr (29)
o

Here, F(E)=F(E)=F(p) s the m-dimensional Fourier
transform  of f(Z)=((8])=7(r) with circular symmetry.
Hence, in two dimensions we may replace a double WKS sam-
pling series by s single WXSX sampling series associated with
the Bessel kemnel Jo(x).

C. System interpretation—Time-Varying Sysiems

As we have presented In Section 1-B, the applied interpreta-
tion [11] for the special cise of K(w, 1) =797 je. the
Shannon sampling expansion (4), is that /(2) is the output of
an Ideal law-pass filter with impulse response hit, 1,0 = 2WS (7,
L) = [5in 20W (- (an/2W)/[a(t - (nm/2W))) and with the
tnput taken to be the pulse train /(¢ ) = f{n/2W). The applicd
interpretation of the generalized sampling expansion (20) can
be given [36], where f{f) is considercd as the output of a
band- (or transform-) limited [38] and » low-pass filter in the
serie of these general integral transforms, with u time-varymng
impulse response that is related divectly to the sampling func-
tion in (21) and with the pulse train [/(¢,)) as its input, This
was done for a trangform-limited function:

fl(')’fp(w)x(w. ) F(w) da (30)
't

with the Fourier-type invorse:
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Fw) -fp(t)lc(w, ) f(e) d1. 31
where p(w) is a weighting function. Here K{co, ¢) stinds for
the complex conjugate of K (w, £). Also, the limits of integra-
tlon in (31) wre not finite and will be specified for the par-
ticular integral transform. The complete details of this analy-
ysix are found in [36] with the main definitions being in
agreement with those in D’Angelo (37), Zadeh [39], and
Zemuniun [40].

Some basic properties of such transforms including the
Parseval's equality, the orthogomality of the sampling func-
tions on the interval of the integral (31), and the convolution
product were derived and tho Hankel transform was presented
as an example [35], [36].

1. Some Appiications {Also Sectiony Vil-B-VII-C)

The first reference to the possible npplication of the gener-
slized smampling theorem in communications |35] was for
time-varying systems analysis [36) which we discussed in the
last section. Also in the case of circular symmetry, for
example in optics, it is known [14], [23] that the needed
double Fourler transfarm can be replaced by a single Jo-
Hanke! (Bessel) transform. Hence, it is advantageous to replace
2 double Shannon sampling series by a single Bessel oné, In
general, with circulay symmetry, an m-dimenslonal Fourier
tranuform reducos ta a one-dimensional J¢y, 3y -4 -Hankel trans-
form [dee (29)]. The next application was in the field of
nuclear sesttering (311, In particalar the sampling functions
(21) for the goneralized wampling theoyrem are necessary for
evuliating the Ith eigenvalue of the unitary S-matnix [41] due
to the nth Regge pole of the S-matrix. This is especially true
when a mare general orthogonal expansion is needed rather
than the usual Legendre one.

In the field of heat transfer, the generalized sampling
theorem was used [42] to facilitate the solution of a conju-
gated boundary value problem. The analysis is applied to
determine the effect of the axial conduction on the tempora-
ture field for a fluid with laminar Nlow in 8 tube. In this
problem the finite Jo-Hankel transform was used to ulgebraize
the radia) pert of the partial differontisl equation. To satisfy
the boundary condition at the interface of the fluid, the
coefficients of the two infinite seriex solutions are matched to
obtain the final solutinn. However, since the generalized
sampling sérics is applicable to the finite Hankel transforms it
was possible [42] to recognize the infinite seriés in both solu-
tions as the sampling series and hence assign it the transform
function value. This resulted in eliminating the infinite sevies
on both mdes, thereby eliminating the need for approximu-
tions and numerical matching procedures.

The most recent attempt to use the generalized sampling
oxpansion 4§ in the field of generl discrete transforms [43],
[44). This tx in paralie} to the discrete Fourier transform
(45), [46] which lead to the fast Fourier transform (FFT)
algorithm [46]1-[48]. In attempting to develop & discrete
Hankel transform [44], [49) we are guided by its correspond-
ing sampling expansion which dictates the sample spacing.
This recent investigation indicstes that for the discrete Jo-
Hankel transform of N terms, the sumples are faken at
{(fo,n)/b) and {(fo,u)c} in the two 7 and w spaces, respec-
tively, with fp o being the nth xero of Joix) and jox <hc <
JoN+r:
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E Sampling with the Velue of the Function and 115
Derivatives

Whett Shannon [1] imtroduced the sampling theorem to
communications he alto romarked that the value of the func-
tion f{¢) can be constructed from the knowledge of the func-
tion and its derivative at every other sample point, then
extended his temark to higher derivatives. la Section IV-B
we will discuss the different methods [14], [24], [50)-[53]
of arriving at this result with illustrations and physical inter-
pretationi. The truncation error bounds [54), [S5] for such
gerios are presented in Section VI-A. This result (241, [52]
has been exteaded [56], [57] to other integral transform
associated with the genamlized (WKSK) sampling theorem,
which we will discuss at the end of Section IV-B and illustrate
for the case of Hankel (Bessel) transforms,

F. Qther Extensions—-Sampling for an Infinite Limit
Laguerre-1.9(x) Transform

Until recently [321, all direct itustzations of the sampling
{Keoretns have been uwssocisted with functions represented
by finite limit (truncated) integral transforms whose kemels
are orthegonal on the same finite interval. The first example
of a sampling expansion for functions represented by an
integral with infinite limits is that of the ussociate Laguerre-
£2(x) transform [32]. Here the aswociste Laguerre poly-
nomials L3(x) are used, which ure orthogonal on the semi-
infinite interval (0, =) with respect to the weighting function
plx)= e x¥. This result is summarized In the following
theorem.

Theorem HI-F-1: 1f the function F(x) is such that g ™
O F(x)? dx <=, or in brief F(x)E Ly (/, p) with p=e™*
« x® and 7 a5 (0, ), then its Laguerre-L{ transform

](v)‘j e T xVLY (Xl-xl) Flx)dx, a>-1,»20

0 0<IA<1
{32)
has the sampling expangion
|
= T
N - - e
-[/(on tm 3" o 3 2 W "')] (33)
N== =4 _s m!
where
['(p4n)
(y)ﬂs r(v) Yy

We note here that in contrast to the other sampling expat-
sions which involve the nth sample f{n) in the nth teym of the
mampling series, the sampling ‘expansion in (33) involves a
combination of the firit n + 1 samples of the function in the
nth term of the ssmpling series. However, for ¢ =k, a non-
negative inleger, the ssmpling expansion (33) gives the sample
values f(k). To verify this we note that the summation over
nin (33) stops at n =& and all the coefficients of (A - h
in the double series cancel out, except that of (A = 1)* which
reduces (33) to F(k). The rigorous prool, which involves
writing the L5 (x)-Laguerre polynomiale arthogonal expansion
of F(x), integrating term by term 25 in (32), and using some
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special integrals [33] is given in (32]. We may note that the
so-called Laguerre function is defined &
Lilx)= Dot atd) M2 a+l;x) (34)

P+t 1)

where M{a, ¥; x) is the confluent hypergeometric function.
We should point out here that the Laguerre function in (24) is
defined differently from that of {33, p. 268, equation (37)].

L3ix) = M(-v,a+]ix) (35)

1
Mip+1)
but it reduces to the Laguerre polynomial £%(x) when » =n.

IV, Various EXTENSIONS OF THE SAMPLING THEOREMS

In this section we will present most extentions of Shannon's
(WKS) and the generalized (WKSK) sumpling théorems. This
includes sumpling in »n dimensions, with derivatives, for
tandom processed, with nonuniformly spaced samples, band-
paxs, (mplicit sampling, for distributions (generalized fume-
tions), for signals with time-varying bands and others.

A. The Sumpling Theorems in n Dimeénsions

Shannon's sampling theorem was extended by Parzen 58]
to include sampling for band-limited functions of n variables.
The following ls the statement given in Rexa [11] where the
proof follows the same method ax used for the one-diman-
sional (WKS) sampling theorem (Section 1-A).

Thearem 1V-A-10 “Let f(ry,13," " . 1,) be a function of »
real variables, whose n-dimensions) Fourier integrul exists and
is identically zero outside an n-dimensional rectungle and is
symmetrical about the origin; that is,

Rynrs  ya) =00 Il > lwgl, k=1,2,-
(36)
Then
- bt wm nin
f(‘ A2 )R NI f—"‘!‘,"'. n)
" : M.§- ﬂ"g-d (h). Wiy
fdn (et “mw)  sin(wpin ~my) an
Wyly ~ryw Wply = =,% )

Miyakawa [S9] presented a sampling theorem (or stationary
stochastic variables in n dimentions, A wery interesting his-
torical review of the sampling theorems with reference to
miny relevant applications wus presented by Petersen |60].
We may remark hece that the above Theorem IV-A-1 can also
be proved casily by using the Patseval's equation in n dimen-
sions (291, Also, we can extend this result to include higher
dimensionul general integryl transforms of the type (19) used
for the generalized sampling theorem.  The proaf we Bive
follows the same method used in Section H1-A for proving the
generatized sampling theorem and in particular the simple use
of the general Parseval’s equations for such higher dimensiorial
transforma. We may point out again the advuniage of the
gencralized sampling theorem where & l(.,,,_.-ﬂmlcl trans-
form is equivalent to the above n-dimensional Fourier trans-
form when 2(F) in (36) and f(7) In (37) possess circular
symmetry (23], Hence, the s-dimensionsl sampling series
(37) may be replaced by & one-dimensional Bessel sampling
sened (26) with m = {n/2) - 1.
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Petersen and Middleton [S3], [61] presenited a very detuiled
treatment of the sampling theorem in » dimensions [61] that
involved the samples of the amplitude and the gradient [53]
of an n-dimengional stochastic fidld (see Sections IV-B-1V-C)

f(i)'lzl (FIESPPTEN TP R/ TS R 16 3 189}
x

N OB (Egy) 3
-3 [f(imu(l.fm)*' p 2 —Ejﬂ- h,(i,.?m)J
%] =t i

(38)

where /(1) s an estimate of the value of the random field /(3)
at every point X in the N-dimensional Euclidean space. g(%,
Zyup) and ke (, Rigg) 1=1,2, -+ N are functions applying.
respectively, to the values of amplitude and each cumpaonent of
the gradient measured at the sampling point £x}, for recon-
struction of the random field at any point . Lp) stands for
the N-dimensional summation Sgl Zx, —- I3y In addition
to suggesting warious applications (see Section VIL-E) they
{61] concluded that, for deterministic functions. the most
efficient lattice is not in general rectangular, nor s 3 unigue re-
construction function asiociated with o given xampling lattice.
In addition, such optimal weighting functions were degived
(53] for leust mean-square réconstruction of the above (38) V.
dimensional stochastic fields from discrete measurements of
smplitude and pgradient. Montgomery [62] wutilized the
sampling expandion with s function and its gradient then
extended the result of Petersen and Middleton (38) 10 include
the samples of the function and its higher partial derivatives
[63]) up to crder X < |

X 25 id
fn=3 {Z "7 G - V1 '!(3,.)} -3 9
a Umole
where /(T) |y a square integrable complex vilued function in
the N-dimensional space, F is a vector in this space, d4 are
points of the sampling lattice and ¢(7 - d3) is the weighting
function upplicd in the construction of f(7). d4 is an integual
lin¢ar combination of the vectars 4, where 4= (1, 03, -,

na ) gives the integral coefficients used,

Gaarder [64] extended the n-dimensional sampling expan-
sion to allow monuniform but periodic sumpling, o subject
which we shall discuss in Section IV-D. Shatmu and Mchts
[65] extended the gencralized (WKSK) sampling theorem,
with Kernels besides the Fourier one, ta higher dimeasions for
bandpass functions instead of the usual low-pass ones (3se
Section 1V-E),

B. Sumpling with the Values of the Functivn and its
Derivatives

1) Tke Shannon' (WKS) Sampling Thevrem. As we thes-
tioned in Section II-E, when Shannon introduced the sans-
pling theorem he alyo remarked that the value of f{r) can be
reconstructed from the knowledge of the tunction and ity
derivative at every other sample point, and then extended his
remarks to higher derivatives, Fogel [S0) considered this
question without referénce to the above remark, and stated
und proved the following theorem,

Theorem IV-B:1: “If & function fi7) contsing no fre
quency higher thun W(4:) it Is determined by giving M func
tion derivative values at esch of a series of points extending
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throughout the time domain, sampling interval 7= (M/2W)
being the time interval between instantancous observations.”

Later, Jagerman and Fogel [24] incorporated the above
theorem and a theorem dealing with exponential order to give
8 number of vory useful theorems including an explicit form
that involves the samples of the function and its derivative.
The method of proving their results relies on Lagrange inter-
polation polynomial and contour integration,

The importance of this result lies in its application. For
example, for an aircraft the estimated velocity as well as posi-
tion zre used to determine a continuous course plot of the
path with half the sampling rate.

As a generalization to the above results and as an explicit
answer to Shannon's remark [1] concerning the reconstruce
tion of a function f{7) when the walue of the function and its
first R derivatives arc given at equidisiant sampling pointy
(R + 1)/2W seconds apart, Linden [51] and then Linden and
Abramson [52] gave the following fmal resull after 1 minor
correctian,

Theorem 1V-B-2: “Let f(t} be a continuous function with
finite Fourier trunsform F{w)[F(w)=0 for |w|> 2nW].

Then

fiy= f: E(kR) + (¢ - ER)E'(kk) + -~ -
k= -

% e-am]

- xn)* ]""..' )
* R!

£ (k) (40)

"
=(t - kh
h(f ]

whore h = (R + 1)/(2W)."
The E (k) in (40) sre lineur combinations of the £ (knr):

[ ¢y .
tDxmy=3 (:)(1)' 'r‘ﬂ;?ﬂ"(kh). (41)

=0 h

d*
P =5 sint)®] [r=o. 2)

The I'P) may bo expressed in terms of the genenlized Ber-
noulll numbers, Some of these velues are

r&o),l r&i)eg ry,:?(-ﬂl—*'—’)
3 15
r.‘,"-“”"z”z"”" P =0, forodd§.

63

Equation (41) may be obtained by multiplying both sides of
(40) by {(r sin w(e - khD))(z — k1) } B *Y 4nd equating their
jth derivatives at ¢ = (kh)fx. Such expansion makes clear the
sdvantuge of sampling with the function and its R derivative
since the sample spacing here is A'=(R + 1)/2W, which is
(R-+1) times that of A= 1/(2W) for the case involving the
samplés of the function only.

Rearrangement of terms in (40) yields an alternate form
which emphasizes the derivatives /(kh) rather than their
lincar combinations (41). In addition, this alternste form
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relates the limit of the R-derivative sampling expansion as
R =+ (o Taylor-type series weighed by 3 Gaussian density
function centered abput each sample point. An interesting
question would be whether two-point (Lindstone interpolation
[25, p. 28)) and then N-point Taylorseries-type expansion
would reduce to a sampling-type expinsion as N +=?7 The
procf of Theorem IV-B-2 relies on somewhat involved matrix
methods | 52]. However, the method of using contour integra-
tion can be employed [56], [37] to desive (40) in a very
simple fashion.

Among other very interesting results concerning the sam-
pling theoremy, Pupoulis [14, p, 132] presented a vory useful
decaomposition theorem and utifized it to arrive at a simple
method for deriving the sampling expansion with R =N - |
derivatives.  The explicit form for R = 1(V =2) was euasily
obtained by this method

4 uﬂ’ (w.tlz) —

(e +2T)  f'(e4207)
f(t+7) X L2010

(- 2aT7)
{43)

where wp is the banddimit and 7= m/{wy). However, this
docs not seem to be the case when N 2> 2. Note that R = 0 or
N =1 corresponds to sampling with the function only.

As we mentioned in the last section, Petersen and Middleton
[53] gave the sampling expansion for stochastic fields repre-
sented by an n-dimensional band-limited Fourier transform
that invalved only the samples of the function and its gradient
(38) (see Section IV-C). They also suggested muny applica-
tions including crystallography and meteorology where the
sumples of the function and the gradient wore sufficient for
their analysiy. As such they did not include any higher partial
derivatives.  Montgomery |63] extended these results to
involve higher order partial detivatives (39). Later another
method was devised [56], [57] for such extension and was
illustrated for the double Fourier transform. Such a method
uses a genoralization to two dimensions of Linden and Abram-
son's important lemma [$2] that was used lor deriving (40),
We suggest here that contour integration methods, similar to
that used in [24], [56], (57] for functions of several vari-
ables [66] may be used to establish the sampling expansions
with R derivatives for higher dimension band-limited Fourier
and other integral transfarms,

As we have shown, sampling with derivatives increases the
sample spacing required, or in other words it allows the recon-
struction of the band-limited signal with a sampling rate less
than the Nyquist rate. Another approach aiming st the same
goal was established by Kahn and Liu [67]. They trentod the
problem of the representation and canstruction of widescnse
stationary stochastic signals, not from one set of data
{fOm/a)} but from severn! sets of sampled values obtained by
using a muitiple channel sampling scheme. They showed that
with the optimum combination of prefilters und post-filters, in
the case whore two sets of sample values are taken, the fre-
quency range of the input signal ls Iimited by the prefilters to
¥ total width of 4¢. This is instead of the usuul total width of
20 when a single channel is usod, which ntakes it stund as a
natural extension of the latter case. Todd [68] used multiple
channels to reconstruct deterministic band-limited signals
with a sampling rate less than the Nyquist rate, The sample
rate needed is inversely related to the number of the channels
used and directly proportional to the Nyquist rate.

2} The Generalized (WKSK) Sampling Thearem: Recently,

e —
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the sampling with R derivatives (40) was extended [$6) to
include the finite limit Hankel snd other transforms besides
the Fourier transform of (40). The method used in such
general rewults employs contour integration which is a generali-
zation of the method wsed by Japerman and Fogel [24]. Itis
shown that, in parailel to tie known special case of the trun-
cated Fourier trangform, the advantage of sampling with R
derivatives i to increase by (R + 1)fold the asymptotic
fpacing between the nampling points. The importance of such
an advantage for the Hankel transform, for example, is of
course realired in time-varying [36) or spatial-varying systems.

As an example, lhcmmuuduuxpuucxmdoavnhom
derivative for the finite limiy Jo-Hankel tansfarm

W
o= f xJo(x0)F (x) dx (44)
0
is
1= 3 ['—'m n'—"—'ﬁ/'(: )] st
Rl I e 2y, e
(43)

whete {29 x } are the zeros of the Jo-Bessel function of the
first kind of order zero and Sg(r) is the same sampling func-
tion as in (25)

2tq ko (at)
a(tda - 20, (arg,x)’

The general procedure for deriving (45) for the J,-Hanke!
transform, and other finite transforms including the Legendre
transform fs outlined in [S6] and presented in detail in [57],
The derivation of the sampling expansion with derivatives for
double finite Fourier transform is presunted in [57].

(46)

Sple)=

C. Sumpling Thearems for Random Procerses

Another extension of the WKS sampling theorsm was con-
sidered by Balakrishnan [69] where he showed that the WKS
sampling theorem cun be used o represent a process of a con-
tinuous time parameter, One of his theorams in this direction
ia the following.

Theorem IV:C-1: “Let x(1),- oo < 1<C%o, be a real or com-
plex valued stochustic process, stationary in the “wide sense”
(or sccond-order stationary), possessing » wpectral density
which vanishes outside the interval [-2aW, 2aW]. Then x(r)
has the representation

_5_) sin w(2Wr —n) (47)

N
0= 2 '(zw w(2Wr - )

for every ¢, whete Lim. stands for limit in the mean squure.”
The proof consists of using the WKS sampling theorem for the
covariance function of the process, since it is ussumed to have
# truncated Fourder ttansform. Then x*(¢), the optimal
estimate of x(¢), was constructed by using the mmpling series
to show that the mean-square error Is zero.

Middleton [12, chap. 20] also treated random sampling
and presented a comparison of fandom and periodic data sym-
pling. Peterson [60) gave 2 very detailed treatment for sam-
pling of spuce-time stochastic processes with application to
mformation and decision systems and a very interesting re-
view. Many applications and extensions of the subject of
optimal reconstruction of multidimensional random fields
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were presented by Petersen snd Middleton 1531, [70) and
Petersen [71]. The camplete trestment of this subject will be
found in [72],

the Fourier kemnel ¢“f 1o establish the above result (47) for
random variables, More general theorems that include the
above result as a specisl case were presented by Lloyd [73],
He first presented conditions undes which the sbove random

{xle), =o= < ¢ <=} are determined linearly by the “sample”
random varlables {x(nk), ~o <n < eo}. This may be sum-
marized as follows: “the process x Is determined linearly by
its samples if and only if some set of frequencies A containing
all the power of the process is digjoint from each of its trans-
lates A= (+/h), F=2§, 22, (that is no two frequencies in
A differ by a multiple of (17/h).” Then Lioyd showed that
such a linear dependence has the form of the sampling series
(47) and discussed its convergence properties. Of the many
theorems presented In this direction, we give the following
thearem [73] and its corollary which is a senoralization of
the above Theorem IV-C-1, It Is noted that most of the results
for stochustic processes are based on their comresponding ones
for deterministic signals.

Theorem (VC-2: "If the spectral distribution of process x
has an open support A whose translates {A= (nth), o <
n <o} are mutuslly disicint then the sumpling series is
(C, 1) summable in norm to x(t)he.,

y lnl)
(¢)=Lim. | === h) K(zr ~nh)" (48)
")n.."l,,z( Nx(n)(n)

where
x(:)-af TGN, < <, (49)
A

A sories Ea) is said to be Césaro summable {or (C, 1)) if the
MEIN Ty =(5y #2342 30 /N) of ity partial sumazg, "+ L 7V
converges (see Section V-A).

We ntay note that if A in (49) is the one interval (=(1/2h),
(1/2h)) then K(t -~ ak) s the familiar sampling function of
(47). The following corollary considers the special case when
A is a finite union of mutually disjoint open intervals {2},
Asha=] 2, i » 1} where, according to (49):

Corollary: *if the set of frequencies A is & finite union of
intervals, or more generally, if lub. wc,ca 1K (8)] <=,
then the sampling series converges in norm to x{7); 0.,

N
xt)=Lim. 3 x(nh)K(r ~ nh)." (50)
N s ne-N

Here Lub, stands for least upper bound which means, as it
sounds, that for the set of real fnumbers 4, if x is an upper
bound for A and if y is any upper bound for A then x < y,
then x is called the least upper bound of 4 orx =Lub. 4. We
may remark here that (50) s a generalization of (47) towards
bandpass or multipass systems and away from the upual band.
Limited ones. The extension to multidimensional space of the
sampling theorem of stationary stochastic variables was troated
by Miyakawa [$S9] which combines Theorem IV-C-1 and
Parzen’s results [S8] for the n-dimensional sampling. Miya-
kawa slso considered the application of his extension to
crystallography. Petersen and Middleton [53] dorived optimum
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weighting, or sampling. functions for reconstructing the n-
dimensional random field f(X) waing the sample measurement
of its amplitude und gradieni (38), Their criterion for the
optimum reconstruction, of the estimate fiF) for f(X), is to
minimize the (statistical) mean-square error & ([ &) - 1(#)1% )
at every point X,

in 4 later paper, Bulskrishnan [74] considered the question,
“that 4 stationdry stochustic process is not phynicaily realiz-
able.”  Ag dn answer he spoke of “essentially’ band-limited
stochitstic processes.”

For sampling over a finite interval (0, T7) instead of the ususl
infinite one (-==, @) Lichtenborger [75] showed thst sampling
infinitely often over any finite interval (0, 7') taken at arbi-
trary discrete times {1} leads to perfect reconstruction of an
anulytic random process f(t). He considered u teparable
Gausslan random process f(¢), with its samples (£(t;)] taken
at the arbitrary times {c;‘] over the fixed interval (0, T7), then

constructed an estimate [ (2) such that
Lim E{fin-fvnP}=0, -=<i<= (51)
where
N
0= 3 alo) £, (52)

=1

The proof utilized the Lagrange lntorpulnug\n formula forrep-
resenting f(¢) with its Nth partial yum for f(r), in (51), then
letting N =+ = An errat bound was derived xs

2Ng 2N

= { - ; 2
Ey=E{lf()- Iy(NP} < TTPETIE

(53)

where = max (|- 2y}, [£ - 25 )) and R is some finite number
detined as | DV Rz, )] < RY_ Here R(t, 1) is the covariance
of £t) and DV p(y= @V £))(dr¥). More general results in
this direction were presented by Beutler [76].

Instead of the usual sampling &t equidistant instants or the
above arbitrary instants, Beutler and Leneman [77] con-
sidered random selection of the sampling peints, Lencmsn
{781 and then Leneman and Lewls [79]-[81] considered
some specific related results, Burakat [82] used the sampling
expansion in one [12], (84 and higher [59], (61] dimen-
siony, in connection with nonlinear transformation of stochas-
tic processes sssociated with Fourler trunsforms of band-
lintited positive functions.

1) Sampling Thearems for Nonstatignary Random Processes!
The sumpling theoramy presented so far in this section deal
with widesense stationary random processes, while the rest of
the puper deals mufnly with deterministic signals, For non
stationary random processes, Zakai (B3] was the first to pre-
sent & sampling theorem followed by Piransshvili [84) them
Gardner [85), who presented the following theorem which
required a relatively simple prool and which was motvated
tuward applications.

Theorem 1V-C-3: “Let x be a random process with auto-
correlation function A (2, 7). If the double Fourier sransform
K A f,9) of k, (1, 3) satisfies the band-limiting constraint

K (Lve " K (e, 1) e MU gy e = 0

for [f] & (1)27) and |¢| 3 (1/27) (for some nonzoro T), then
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¥ig- 3. Recurrent nonuniform sampling, ¥ = 3,

x sdmits the mean-squire equivaleat sampling represontation ;™

.- sin (0 - aT) T
E{[x(t) ,g_""n_—_——‘:(:-nnn ]} 0 8

for all ¢ € (=oo, 2=)."

The proo! here is u formal one in the sense that (54) was ex-
pandod and the expectation was allowed to be exchanged with
the Infinite summation to yield the sbove result of (54). We
may note how this theorem is relsted to two-dimeasionul de-
terministic function sampling, Sharma and Mehta [86] pre-
sented = goneralized sampling theorem for nonstationsry
procezsses,

D. Sampling with Nonuniformiy Spaced Sampling Points

For the case of & band-limited function f(¢) with ali the
mmpling points outside the interval (- T, T) being exactly zero,
Shannon [1] remarked, as did others before him, that only
then can f(f) be specificed by 2WT sempling points where W
is the bandwidth. He also remiarked that these 2WT sampling
points need not be equally spaced, an idea that obviously can~
not be covered by his version of the WKS sampling theorem
and its cardinal series, We review here some of the work which
was done in this disection. The first is a statement which was
attributed ta Cauchy by Black [7,p, 41]:

If & signal is & mugnimde-time function, and If time divided inti
equal intervals such that each mbdivision camptises an Interval
7 seconds (ic) lumg, Where T i3 Jess than half the period of the
Righest significant frequency component of the signul, aud If one
Inntantanecus sample b taken from esch wbdntersal (sic) In any
mammer, then s knowledge of the instantuneous magnitnde of
esch wmple plus & knowledge of the mstans within each b
intarvai at which the sample s wken, consains all the informa-
tion of the oqyginal signal,

Yen [87) comuidered the case whete 3 finite number of uni-
form sample points migrate in a uniform distribution to new
distinct positions. He proved that the bund-limited signu
J(¢) remains unigquely defined, then reconstructed f(t). When
the number of migrated points increaves without limit he
called it a gap and proved a similer thearem. Yen also con-
tdered the case of a “recurrent, nonuniform sempling.” That
is, when the sampling points are divided into groups of N
points cach, and the groups hive a recurrent period of V/2W
s, & shown in Fig 3 where ¥ is the maximum frequency of
the band-limited function F{7). He determined j(7) uniguely
and recoastructed it in terms of its values At = £, +(mN/2W),
pel, 2, Noandm=---,-1,0, 1, as follows,

Theorem [V-D-i; “A bandwidth-limited signal is uniquely
determinad by its values at a sot of recumrent sample points
6= Tom = ty + (mN/2IW), p= L2y Nom=2-r,=1,0, 1,
«++_ The reconstruction is

- N
finy= 3 2 frpm) Wpmln) (53)

Mmwe-pe]
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wherm
N 2w
[1 sin == 0 1g) g 5
Womlt) = . . y .
ﬁ 2‘“-“ ) bw(‘_‘ M)
in— (=) “n M
e NPT N 2w
(56)

Recently, Sankur and Gerhardt (88] considered various
methods for reconstructing a continuous signal from its non-
uniform samples. They employed and compared a number of
techniques including low-pass filtering, spline interpolation,
und Yen's [87] interpolation. The spline- or hill-function-type
interpolation is u special polynomial expansion which i rela-
tively new, with best approximation properties (see Section
VII-C). Their observation, {rom the simulation experiments
with these and other technigues, was that even though Yen's
method was impractical to reulize, it still proved superior (o
the other methods. This it in the senso that it is insensitive (o
sample migration 2nd signalto-noise ratio (SNR)

x4

I=1

N ~
Y -

SNR = (37)

where the 1, are (be signal samples and 3 are the samples from
the reconstructed signal  Recently Marvasti and Gerhardt
{89] presented u practical treatment for signal transmisxion
using nonuniform sampling. The special cise of Yen's non-
uniform but periodic sampling was extended to higher dimen-
sions by Gaarder [64] with explicit sampling series which he
then applied to nonrectangular lattices,

Yso and Thomas {90] derived sampling representation for
band-limited functions when the sampling instants are not
necessarily spaced uniformly but esch deviate less than (1/7)
In 2 = 0,22 from its corresponding Nyquist instant, 45 required
by the WKS sampling theorem. They termed such represents-
tion ss “semiuniform” and used nonharmaonic Fourier series
for its derivation; Finally they remarked that a sample repre-
sentation is not possible when all the sampling instants are al-
lowed 1o deviste nonuniformly by (1/4) unit from their cor-
responding Nyquist instants, or if an arbitrary finite number
of the sampling instants are placed arbitrarily, or if additional
sample points are sdded. Prior to this, Beutler [91,p. 111],in
his unified approach to sampling theorems (seo Section V-C),
treated the same “perturbation’ question and concluded that
the sampling times need not be periodic, but may vary from
the true periodicity by over 20 percent without sacrificing ca
pability of restoring the signul /(7), Also, Leneman [92] pre-
sented error bounds for jittered sampling. In a luter paper,
Yao and Thomas [93] considered the question of the stability
of the WKS sampling expansion in the sense that 3 small
change in the amplitude of sample values should lead 1o small
changes in the reconstructed function. This subject will be
discussed in Section VID. They showed that the uniform
Lugrange interpolation sampling expansion preseives some
stable properties while a general nonuniform sampling expan-
sion need not posscss these stability properties. For their
“semiuniform sampling expansion™ [93] where |z, - (nn/fa)l <
d < (1/4) they showed that it is stable while for the nonuni-
form sampling, i.e., when d > (1/4) the Lagrange interpolation
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sampling expansion is not stable [93, Theorem 1]. They also
gave a simple example with uniform sampling that is not stable
(see Section VED), Bautler [94] considered and proved what
is called the “folk theorem™ in the sense that a signal f{¢) may
bo represented by any linesr combination of irregularly spaced
samples f{t,), provided that the svarage sampling rate exceeds
the Nyquist rate, i.¢., that the number of samples per unit time
exceed (on the average) twice the highest frequency present in
the signal. Also he showed that only the past nesd to be sam-
pled at an average rate greater than the Nyquist rate to assure
error-iree recovery. Even more, the récovery is sometimes
fensible if the average rate is less than the Nyquist rate, e,
if sampling is concentrated in rare bursis of higher than the
Nyquist rate sampling Like Yuo und Thomas [93], his proofs
utilized nonharmonic series expansion, but within » more gen-
eral muathématical setting. Furthermore, Beutler [94] upplied
his results to deterministic as well as widesense stationary
stachastic processes.

In summary, for & band-limited function on (~¢, @) the free-
dam of having irregular sampling, or allowing the sampling in-
stants £, to deviate from those of the Nyquist instants {nw/a),
stems from same theorems due to Levinson [95]. These theo-
rems give conditions on a set of real numbers {ry} which as-
sure that

J“_u.u.. gl dw =0, forall n, g €L, (~a,a) (58)
-8

implies that =0 almost everywhere. Here FELp(-q, )
means that [% 15(w)I? dw < e where the usual case of p =2
defines finite enesgy signals. Also the condition (58) defines
the set {e"“*n) as a cloged set.

Brown [96] trested the nonuniform sampling for bangd-
limited snd finite energy signals using a finite energy and
band-Jimited Lagrange interpolating function. He gave condi-
tions on the nonuniform sempling instants (£, } such that 7(r)
is uniquely determined by the sample values (7(r,)) und po-
soses 3 uniformly convergent representation

fin= i ) W,(t), ~= <1 <o (59)

The function W, (1) Is a Lagrange interpolating function which
is band-lnited to the same band as /(1) and W, (£, 1= b, 5 for
integers nand k. The conditions on the sequence’ {t,s } are thut
it is both stable, as defined by Yao and Thomas [93], and
exact. By "exact” or “minimal™ set it is meant thut the clo-
sare, as defined by (S8) of the set {¢™'n} on the interval
(~a, @), is destroyed by the deletion of any single term from it.

A detailed treatment of the sampling theorem including
nonequidistant sampling points is presented in Churgin and
lakovley [97].

E Sampling for Bandpass Functions

Kohlenberg [98] was the first to consider sampling expan-
sions for a bandpsss function which lies in the frequency band
(Wo, Wo+ W) instesd of the usunl Tow-puss function with
band limits (-W, W), This is to be distinguished from the
bandpass function which vanishes outside the intervals [W,,
Wo+ W) U [-W, - W, ~Wo], Because of the possible non-
uniqueness of the .equispaced sampling expunulon, he intro-
duced what he termed “sccond-order sampling” which guar-
anteed s umique representation.  Second-order sumpling
involves two interieaved sequences of equispuced sampling
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points. In general a pth-order sumpling iy defined a

P P
o= z Li(0= Z Z Sl k) St -ein-kp) (60)

i=) I=1 n

in which the ith samipling series g,(r) has particular “sample
spacing' o, “phase” &, and “sampling function™ $;(r). He
firtt considered a first-order sampling with 2, = o = (J/2W),
%y =0 for band-limited function f(z) in the fréquency range
(0, W) and used Fourier analysis to obtain the WKS sampling
series

fly= };, ! (W)

-

sinw (IWr = n)
—_— 61
w(2Wt - n) t61)
whero the samples are independent, since S,(0)= | and
Sy(n/2W) =0 for n =4], 22 --- and the sampling rate of
2W per second is minimum. For the case of first-order sam-
pling with e, = ¢ < (1/2W)

sin 2 Wit - an)

oWt~ an) (62

=3 flam
n

It is clear that the samples are not independent since Sy (an) ¥ 0
forn# 0, To trest this problem for the ganeral case of band-
pass function /(1) on (Wy, Wo + W), a necessary and sufficient
condition of Wy =cW, =0, 1, 2,--~, was found to permit
the exact construction of f(1) from its samples ut the mini-
mum rate of 2W per second. In contrast, the following second-
arder sampling expansion (¢, =ay »(I/W), ky =0, k; =k #£0
in (60)), pormits the use of 2W samples per second for any W,
and W (98], [12, p. 215).

Theorem IV-£-1: For a function f(f) in a band (W,,
Wo + W), the exact interpolation formula is

- (G- 3) 5 ) sGor-] @

PROCEEDINGS OF THE IEEE, VOL. 65, NO. 11, NOVEMBER 1977

wheee the frequency spectrum vanishes outside the bandpass
mn Ra" '“‘° 2 'w. wo <HI'W| u["”o = IW.'W@ +'Wl
instead of the interval / in (19)~(21), Their main result (65,
Theorem 2.3) is the following.

Theorem TV-£-2: “Let g(w) be a complex valued funetion
on ~*<w<* with glw)EL,, ie, % plw)]do<=,
and let K(7, w) be a complex function of time such thut
[K(t, )l = [K(r, ~w)l. Consider a bandpuss uignal £(f) which
ts real valued and band-limited to the bandpass rogion Rgp =
=Wy = xW,~ Wy +aW] U [y - 2W, Wy +aW]. If

ﬂt)'l Pl K, @) dw (63)
ap
then
fin= 3 /(-"-) La0) (66)
A\
where
n
2f K(r, ) X (-— w) dw
Rap W
Lylty= 3 X4 (67)
f K (l.w), dw
Ryp =

The explicit exprestion for L, (1) and un example of K(r, w) =
Jolw, 1), the Bessel function of the first kind of zeroth order,
were also presented. We may remark that the method of prow
Ing this general result &5 a simple and stralghtforward one
which purallels the proof for the generalized (WKSK) sampling
théorem (Theorem 1I-A-1). But in contrast to the remark
made by Kohlenberg [98] and others [12], [S1], [54], con-
corning the required sampling rate In order to guarantee the
uigebraic independence of the samples, no such remark was
mentioned for the above geperalization or its special case.
However the above Theorem IV-E-2 was extended to higher

cos [20(Wo + W) 1= (r+ 1) aWk|— cos [20(rW ~ Wo) s~ (r % 1) aWk)

Sit) =
i eWegin (r + |} wk

In (63), we have two groups of samples each at o rate of W per
second with spacing (§/W) shifted by o phase & from esch
other. & in (64) isa constunt wuch that kWr RW(r 4+ |) % 0.1,
-, and whero  is an integer such thut (2Wo /W) <7 < W,/
W+ 1. Such development of sampling for bandpass functions
is discussed m Middleton [12, p. 215], and was zlso derived by
Linden [51] and Parzen [SH, Thearem 4) using somewhat
similar but more direct and simpler methods of Fourier anul-
yaln Linden [S1] relied on the convolution theorem of Fou-
tier anulysis and very clear graphical fllustrations to derive
(63) and (64) and also gave second-order sampling oxpansion
for the usual bandimited function. The result (63), (64) can
:eiderlved casily with the tielp of the Hilbert transform [17, p,

61.

1) The Generalized (WKSK) Sampling Theorem for Band-
pazs Functions: Sharma and Mehix [65] derived the sampling
expansion for bundpass functions represented by more general
integral transforms than the Fourier trandform. This is 4 pen-
eralization of the WKSK sumpling theorsm (Theorem 111-A-1)

cos [2a(rW ~ Wo) 71 - raWk] - cos [2aWgr - riik)
IaWr sin AWk g

(64)

dimensions |65, Theorem 3.1] which is a generalization of
Theorem IV-A-1 for bandpass functions with more general
kernels,

E Impiicit Sampling

All the sampling expanstons thit we have discussed up il
now may be termed “explicit™ samplings in the sense that a
band-limited function f(t) is represented in torms of its sarm-
ples f(r,) at preselected instants (¢, } which are independent
of f(r). “Implicit" sampling may refer to the case when the
function i represented in terms of the instanty {1, } in which
the function assumed a predetermined value, for example its
zero crossings {1, :/(r,) =0} or its crossings with s cosine
function {t,: f{1,)=C cos 2xwt, ). The first “implicit™ mam-
pling expanson was considered by Band and Cahn |99 as
they extended the WKS sampling theorem when the sampling
instants {1, } ate not independent of the sampled signal f(7).
Their justification was that such 1 procedure had proved valu-
able in minimizing the error caused by infinite clipping, which

“
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means that we can transmit a continuous signa) over § discrete
chunnel if the zer0 crostings of /(r) are preserved. Forf(r),a
band-limited function an (0, W), they extended 1 1o 3 complex
varinble r and used Titchmarah’s | 100] result that

Flz)= f./ "y ar (68)
W

Is & real, entire function, described by the location of its zeras
which are eithor real OF oocur as complex conjugate pairs. fn
#eneral, the 2eros tend (o cluster near the real axis. Further
more, the aggregate of the Zeros occur at the Nyquist rate.
Thus

7= [] (l < :‘—) (69)

ne| -
where /(0) # 0, z, = gt Rn & Ryey, and lim, ..
(IWR,/n) = |, Note that the formuls (69) needs aif the past
and future zeos, both red) and complex, which makes it im-
practicable, Instead, they sugsested another, more practicable
problem with specified interval (~(T/2), (772)) end zeros inside
this interval occurring at slightly less than the Nyquist rate,
Ieros outside are red) and occurring al the Nyquist rute. Let
N be the largent tnteger not exceeding W7 then thers are @
maximum of 2N real of complex zeros, 1, = Ittty | ] <
T/2. Ouwde this interyal the zeros oceur 4t In = 2(n/2W),
forn=N+ ILLN+2, -« Using this in (69) and referring to
the infinite product representation of the sine function, they
obtained

g sin (20Wr - o)
- - ~
7 ._2_:~( 0" a, 3 == (70)

where A, it exprossed in terms of the values of the 2N zeros
“m inside the interval

|
U o [ %o

An =f(0) W (7N
== (m =)
men

whers moin the numerator of (71) as the index of the zeros
within the interyy) (=(T72), (T72)). Luter Bond, Cahn, and
Hancock [101] found A relation between the above “imphigit
Smpling”™ and the Fouries coefficients that sllows y Fourier
®tes represcntation of 4 band-limited function in terms of
ity zer0 Crossings. Mote wark on the subject of implicit pame-
pling was done by Voelkar [102] whick was simulated an
* camputer by Sekoy [103]. BsrDayid [104] considered
Important case of Impligit sumpling in terms of real
Variables alope, Fop example, the instants { ) a1 which a
bounded band-Himited function f(e) croases a coslne function
Ut fi1,) = cos 2mwi, ), whete £(0) and {tn} determine £z
uniquely. He cansidered hounded functions which are bund-
himited in the usyal sense or as extended by Zgkai [83], 1o
aive the following implicst sumpling theoram,
Thearem tv.p;- “Let f{2) be 3 hounded bund-limited func-
tiot of bandwidih Wy such that the sempling expangion

n e -
J(2)= tim 5_‘,/(3-) S2(20ve ~ kw) (72)

-

Iw (2mwz - kx)
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converges uniformly, for w > Wy, in ny bounded region of
the z-plane, LetC > g > 17€¢)) and Jot

{n}= {e: 110) = € con 29w1), i TRRRE I I 1 S T

(73)
Then the following infinite product alsg converges uniformly,
though conditiomally, in the surne region:

L
1) =[7(0)- €] flim 1§ (l- %)#Ccmm. (74)

f~- &

A sufficlent condition for co €& is that 7,5 should (.
dicate the kth zero to the right (left) of the origin."

G. Sampling Jor Generalized Funcriong (Distributions)
The extension of the WKS sampling thearem (1), (2) to band-

limited generalized functions was first considered by Camphell
[105), He noted that the WKS sampling expansion

o 7\ sin (7 ~ am)
2 -] —— 7
110 _};/( n) T (7%)
of the band-limited function
fi)= fa eI g () deo (76)
-1

where g(w) is intograble, is valid when g (w) ks replaced by the
Dirac delta function 8(w - ), which iz a speciul case of & gen-
eralized function. In this case it is obyious that ( 75) reduces to

in (¢ - nx)
Q- mm)

8 a Fourler series expunsion of the function f(s)=¢ /5t
However when g(w)=4 (W~ 2), the derivative of &(cw - ¢),
the Fourier transform (76) in this case i/t e” 1 ong flnmi02) =
Gnn/S2) e Um0 = o) which makes the serfes (75) diverge,
Here we let O ang o bave thelr usyal meaning, fe., fix) =
Ox(x)} means that there oxists zn o such that F(x) < Me(x)

|:

not extend to the Fourjer trunsform of an arbitrary distribu-
tion with bounded suppart.  He then investigated functions
which are Fourier transfoems of distributions with bounded
Mupport and showsd thyt these band-limited distribution func-
tions are still entire and are completely determined by their
sample values at nw/Q2, Here £2 sarves ag o bandwidth for the
support (~§2, ), which we shall presont next as Thearem V-
G-1. The statements of Campbell’s theorems need & fow defi-
nNitiony and the usyal nofation, as given in Zemanian [106].
Oae of his main results in this direction is the following.
Theorem IV-G-}. “Leoy &) be o distribution with support
contained in the open interval {wilw| <(1- ¢ 2} where
0<qg <), Let 7(1) be the Fourier transform of #(w). Then

- Am\ sin (21 - ax)
/(t)smz-- [(ﬂ) ms@(ﬂl nrl) (78)

where () is the additions! factor defined s




1£78

exp [1/(x* = 1) - jxy] dx

S{y)= S (79)

1
f exp [1/(x* - 1)) d=x
-1

Campbell [105] also derived an expression for the truncation
error (see (181)) of (78) that reduced to previously derived
errors of the usual WKS sampling series, which we shall pre-
sont at the end of Section VI-A.

Pfaffelhuber [107] presented additional resolts for the
banddimited generalized functions which include that, for a
suitably restricted space of test functions, the WKS sampling
theorem cxpansion ¢ valid in its classical form, and that a
band-limited generalized function f(f) can be represented by
a series of delta functions

=2 3 M) 1) (80)

-

concentrated at the sampling points (¢, } with weights equal
to the sampling values f(r,,). This meany thut, as it/is the case
for ordinary band-limited functions, the infarmation con-
teined in the whole signal is equal to the information provided
by the sample values at {2, ].

As we have indicated [29] in Section IV-A for sampling in
n dimensions and other extensions of the sampling theorem,
the proper extension of Parseval's equation (108, p. 64]
offers the simplest method of proof,

Plaffelhuber [107) also gave a representation for band-
limited distribution that Jooked like a combination of = Taylor
sonies and a conventional sampling series {107, Theorem 2].

1. Sampiing for Time-Varying Syrrems with
Time-Varying Bands

Horjuchi' [109] was the first to extend the WKS sumpling
theorem for the snalysis of continwous mgnals specified shy
timevarying spectrs with time-varying bands. This is in line
with what we had presented in Section I11-C for using the gen-
eralized WKSK sampling theorem for time-varying systems. In
both cases the analysis is justified only when the fluctustions
of the time-vitrying parameters of the system are predicted in
advance.

Consider the class of continuous signals

l :“]“’
f0)=— J: Flw, 1) ™" dw (81)

wwy(f)

with ttmevarying spectrum F(w, ¢) and time-varying bands,
2mwy(r), 2mwy(r). Here wy(¢) and wy(f) are bounded real-
valued piscewise-continuons functions such that wy(r) >
wy (), wale) > 0.

Signal £() of (8 1) can be specified by a time-varying signal

1 2w (r)
i, 7)=— f Flw, 1) e'" dr

(82)
n 1rwy(r)
and its Fourigr transform
Flw, 11= f- flr,mye = ar (83)

where f(1) = f(r, 1)
Singe the function F{w, r) vanishes outside the interval
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B:2ow, (1) € w < 2mwy(t), the signal f{7) is szid to have the
time-varying spectrum F{w, t) and the time-varying band 8.
Also for constant w, and wy in (81) this represents the band-
pass signal which we discussed in Section IV-E,

The expansion for the signal f(r) of (81) in terms of the
samples of f(1, 7) in (82) is

fity= .‘i- ’{'z?k{ci r} #a1) (84)

where
wit) =4 [wale)= wy ()] (85)
a0 = %{—2{::(—)'3—;-}53 exp {:m,m [r - 2_’; ”]}m)
wo(n)=§ {w (e)+ wa(n)]. (87

The derivation of the sampling expansion (84) is obtained
simply by writing the Fouriey series of F(w, 1) in terms of
exp {~ (ik[2w(0)) w}

| & k ik
2w(f) .§_,{2w(r)"} “p{ 2wlr) w} wic

then substituting in (81),

We note thut the coelficients f((k/2w(7)), 1) of (B4), ns spec-
ified by (82), are not the sume us the samples {f(#y)} of the
signal /(1) except at the zeros {ry } of the equation

w(r)- k=0, (89)

In this case, ¢p(r) may be called a preudo-sampling function
since it plays the role of the usual sampling function

h('n).at.l- k.a'ﬂ,;l,"'. (90)

Horiuchi [ 109] then considered some specinl cases and showed
that only for restricted cases the expansion (84) can be real-
ized as a sampling expansion with the usual physical intorpre-
tation of the WKS sampling theorem. We may remark here
that the expansion (84) may be realized when we consider the
generalized WEKSK sampling theorem and its physical interpre-
tation in terms of timevarying systems (see Section 11-C).
Applications of both the WKS and the generalized WKSK
sampling theorems to time-varying systems are discussed in
Section VII-B.

Fle, 1) =

I Other Extensions

Papoulis [13], [14], [110], [111] presented and discussed
in detail various extensions of the WKS sampling theorem.
Some of these extensions were utilized to give a more prac-
tical physical interpretation of the sampling theorem than the
one amsociated with an idesl low-pass filter (Section I-B). He
then presented different error bounds for the sampling expan-
ston which we shall discuss in Sections VIi-A and VI-B, We will
present here the main extensions which lead to such relaxed
physical interpretation of the sampling series to which we
hinted in Section [-B (see Fig. | and Fig. 2, Section 1-B).
Papoulis considered & band-limited signal /(¢)

\
/(f)"—"-[. Flw) e’ duw
r L.,

but constructed It in = more general way than that of the WKS
sampling theorem (4) Lo give

(s1)
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sin wolt - n7)

(r)= D) ——a= (92)
(e} = ,,Z_, I walf - nT)
where Wy = (mTy > Wy, Wy o Wiy <2 Wy oWy We note

here that with the band limit w,  the sampling spacing T=
(rjw;) & (w/wy ), which means that such 2 relaxed extension
(92) requires higher sampling rates. The prool of (22) is con-
sidered to be » particulurly elegant version [ 14, p. 120] of the
proo! of the WKS sampling theorem. Papoulls also proved a
converse to the above result, Le., “Given an arbitrary sequence
of numbers {a, |, if we form the sum

-~ sin Wolt— nl)
(t)= S w3
0= 2 AT ¥

then x{¢) is band-limited by wy." The proof sssumes the
Faurier ssries expansion of F(w) then multiplication by
e T pyol) and Integration term by term. Of course, we
must have & condition on the cosfficients {2, ) that allows
such term by term Integration. A sufficient condition is that
Ene-w |80 <. A number of theorems in this direction for
the WKS and the WKSK sampling theorems aro presented in
[34). Ericion and Johansson [112] also derived necessury
and sufficient conditions for some variations of the WKS sum-
pling series.

I'lpoubs [14] then presentad the sampling expansion for
FA(r), ingtesd of £(2), 6f (92) ux

nT)
nT)

= 5 iy el

Wa (‘ (94)

where wy =(m/T), wy = 2w, (instead of ws @ wy for f(t)
in (92)), and wg is such that 2w, € W, <2w; - 2w,, We
note here how {94) with 7 < (m/2w,) requires more than
double the usual sampling rate. Papoulis then used this resull
(94) for deriving the round-off error of the sampling series
which we shall digcuss in Section VI-C,

Mare significance should be assigned to the sampling expan-
sion {94} mnce in applying the sempling thearem to scattering
problems or crvstallography it is the intensity | £(£)1?, and not
the wave funcnuon I(f). that 1 to be constructed from its mea-
nured samples [ 7{nT)* , as we shall see in Section VII-A.

Papoulis' most n:u:m guneralization [111) of the Shannon
sumplng theorom o 1o express the band-limited mgnal

l -~
= — ‘ Fw) " dis 95
r
tn terms of the numple vaives £ (nT) of the output
l o
)=~ f Flow) Hiw) e dew (96)

-0

of p system H(w) driven by (7). The sampling expansion i

=Y x(nT)y(t-nT) on
nE—-
where
| r "uf
V(ﬂ-z; ;“—w‘)d (9R)
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and the proof is a straightforward one after writing the Fourier
series expansion for (¢ "~/ (1)) on (-0, o),

Another extension of the sampling theorem s the prediction
of banddimited processes from past samples Brown [113)
conmidered f(¢) as either a deterministic or a stochastic signal
which 11 band-limited to the frequency interval jwis w

"
f(n=l r Flw) e de, ~m <t <o (90)

with |FI* integrable on [ #, %], He showed that for any con-
stant sampling spacing 7 satisfying 0 < 7" < (1/2), f{1) may
be spproximated arbitrarily well by a linear combination of
past sumples f{f - £7) taken at any conttant mie that exceeds
twice the associated Nyquist rate

"
Um |f(6)= 3 san (£~ AT)|=0

no- 'y

(100)

uniformly for -oe <r<es, Herc the coefficients ay, =
=1 (cos #7)* () are independent of the detailed struc-
ture of the signal /(7). This result provides a sharpening of a
previous result by Wainstein and Zubakoy [114] which re-
quires & sampling rate in excess of three fimes the Nygquist
rate. Beutler [94] showed thut there exist coefficients for re-
cavering the signals with sampling rates required fo exceed
anly the Nyguist rate. However, the exphelt form for such
coefficlents are not given and in general they are not indepen-
dent of the structure of the predicted function /(t).

Maeda [ 113] treated the sampling theorem for band-limited
periodic signals [ 1 7] with nonuniformly spaced points. These
remilts were. extended by isomichi [116] 1o hand-limited sig-
nals with finits energy.

Among other extensions of the WKS sumpling theorem are
the integral sampling [117] in whichk the sample v taken over
s whole sampling period T and the sumpling for signals as solu-
tions of nth-order linesr differentinl equations with constant
coefficients [118]. Holt, Hill, and Linggard [117] developed a
network that allows integrating the input signal f(r) over the
whole sampling period. The sampled output signal £*(r) of
such a clreuit Is expressed ay

r rr .
Lrydr- f f(r)dr} ult - nT)
nl*-T al-2T

(101)

where u{t) is the unit step function, inaddition to his detalled
presentation and applications of the sampling theorem, Lathi
{18] considered what is termed “natural™ sampling where very
narrow pulses of finite width sre conmdered instead of the in-
stentaneous impulses of the WKS sampling theorem. Kishi and
Maeda {118] considered nth-order linear differentis] equationy
with constant coefficients und vhowed that their solutions
obey sampling theorems similar to those of band-Iimited fune-
tions. Their main result iy that a waveform f(r) which is 2
finite linear combination of "™ e® or " sin (cwr +8) can be
constructed from a finite sot of its sample values at equal inter
vals. In addition they showed that /(1) can also be constructed
uniquely in terms of the samples of the derivative £'(r)as well
25 f{t). Maeda [119] showed the relatinns between such signals
[LI8] and band-limited signals, and then gave some theorems
[ 120] for the interpolatory functions, Kishi and Macds [121]
followed this treatment by an application to waveform
mpproximation.

ro=3

n=0

- ——— . ——
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For integral transforms with infinite limits, likz the Hilbert
transform, Linden [51] gave a sampling expansion in terms of
the samples of a bandpass function and its Hilbert transform.
Papoulis (14, p. 130] presented @ sampling expansion for a
signal represented by the infimite limit Hilbest transform. The
sampling expansion for the infinite limit Laguerre-L3(x) trans-
from (33) was presented in Section [II-F.

Wunsch [122) and Kioustelidis [123) considered sampling
of durstion- (or time-) limited functions, instesd of band-
Hmited functions., Recently Butzer und Splittstosser [124)
presented & more detailed treatment of such sampling expan-
sion for continuous duration-limited functions whose spec-
trum is absolutely Integmtable. They also gave a bound on
the truncation error of such series. Slepian and Polluk [30]
treated the problem of reconstructing a finite-duration-finite-
energy (FDFE) signal that Is observed through an idezl low-
pass filter, They showed that such construction could be per-
formed without error by expanding the time-dimited signal as
a series of prolate spheroidal functions, Stuller [125] used
certain time domain sampling arguments, along with the series
of prolate spheroidal functions [30], to derive an interpola-
tion formula for the FDFE signal from equally spacod samples
of the observed waveform. He showed that in the noistless
case, perfoct reconstruction of the FDFE signal can be ob-
tained when the sampling rate exceeds one half the minimum
sumpling rate specified by the WKS sympling theorom. The
limitations imposed by measuroment noise weee also
described, Kramer [126] developed a very uscful property of
the band-limited functions in the sense that in digital computa-
tions “continuous™ operations are replaced by “'discrote” ones.
In particular he gave explicit relations between the samples of
the higher derivative of a band-limited function f(r) and the
mmples of /(¢). This was also done for bandpass functions.

V. DifrFERENT METHODS, CONDITIONS, AND
REPRESENTATION OF THE SAMPLING SERIES

In this section we will outline most of the methods used in
deriving the WKS and the WKSK sampling series. The empha-
sis here Is to relax the conditions on the sampled signals. This
includes sampling for not necessarily finite enorgy nignals, Le.,
signals whoso transflorms arc not necessarily square integrable
but may be absolutely integrable. Benides the usual finite limit
integral reprosentation of the signul, o triple intogral repre-
sentation, that sllows different physical interpretations will
also be prosented, This will be concluded by a summary of the
various attempts to unify the different aspects of the sampling
expansion in the sense of 4 general mathematical setting which
we will not pursue here in much detail, We rofer the interested
reader (o the original papers,

A. Different Methods end Conditions for Deriving the
Sampling Series

In Sections 11 and 111, we presented the WKS and the gen-
emlized WKSK sampling theorems and offered the usual
proafs that included contour integration for the sampled func-
tion f(r) and orthogonal cxpansion for the kernel X(x, 1) or
the transformed function £{x) in

f(l)'jl(x. 1) Fix)dx (19)
!

where both Flx) and K(x, -) are sssumed to be square inte-
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grable, Le., F(x), K (x,~)E L3 () and whese [ is a finite interval,
In the case of the WKS sempling theorem K(x, 1) = ¢®'€
L4(7) and so it is the purpose of this section to Investigate
relaxing the condition F(x) € L3 (1) on the transformed func-
tion F(x).

A simple mode of proof was offered by Brown [127] for
the WKS sampling theorem which employed the prototype
Pamseval equation; that is, when g, & € Ly(/) and c,, dy are
their redpective Fourier coefficients, for the orthogonal expan-
sion in terms of (K(x, 7,)}, then

f:(x)F:')dx'- im ¥ cnda IKGx 003 (10D)
(] N-~=yi<N
where
| K, 2,013 'flx(x.:,,)l‘ dx.
(]

Brown considerad the band-limited function

fley= f' " Fix) dx (103)

-8

and employed (102) with glx) = ™, h(x) = F(x); K(x, t,) =
A9 Cloarly, d = (1)20) f(na]a), 1K Ce, )13 = 22, and

sin (ar - nw)

en = Salt) =~ (104)

When (104) is used in (102) we obtain ¢

|

J =t - nm\ sin (at - Aw) §

1 _‘:c Flx) dx .?;./(. ) el L
es the WKS sampling series.

Unless otherwise indicated, @ summation like Z¢, will as-
sume limits 23 in (102) while 27 ¢, xignifies the nth partial
sum. It is clear that this method of proof is velid far the
WKSK sempling theotem when ¢, and d,, are given in (23) and
(21) as Fourier coefficients for F(x) and K(x, r) of (61), re-
spectively, The WKSK theorem can also bt proved by using
the Schwarz inequality [9] on £(2) in (18)-(20):

n 3
Iﬂ‘) = Z f(‘u) sn('){

2
=

”n
J‘kx. )~ Z Kix, l.)S,.(l)] Fix)dx
1

n 3
<j|xu.r)-)j K(x, 1,) 8p(1) dxfmx)l' dx  (106)
! I

snd noting that the orthogonal series inside the last integral
converges in the mean to the square integrable kemel X(x, 1)
as

Kix,t)=lim. 3. S0 Kx,1,). (1a7)

N |nlSN

In attempting to move away from the condition of square in-
tegrability, or finite energy, band-limited signals, Brown [127]
raised 3 question concerning the necessity for a “new mode of
proof™ when Fix) € L;(J). He gave the' example of Bessel
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function of zerath order

U il xt)d
Jutmry=— ‘ LA ”" (108)
rl, Ve-x

which is band-limited to [-%, 7] and with 3 Fourier trans-
form F(x) = (2077 - x7) which s in L,{-%, 1), ie, J™
12377 - x¥ | dx < % but not in Ly(-m, o). Hence, his verdion
of using the above prototype Parseval cquation or the other
method of using the Schwarz inequality [9] cannot be used
for they both require F(x)E Ly(-n, m). To answer such ques-
tiony, we will make use of the Hélder Inequality, as opposed
to its special case, the Schwary inequality, and the many ex-
tensions of the Purseval equation [29). Among the various
methody for reluxing the conditions on F{x), both the Holder
inequality and an extension of the Parseval equation allow
the wvalidity of the WKS sampling expansion ( 105) when
FIX)E Ly (+a, ), which answers Brown's question of (108) as
4 special case,

Before we introduce the Holder inequality and the proofs of
the sampling theorems, we will present here a few definitions
and stute some basic and very clesr results [22),

Let f(x) € Lp(a, &) mean that fix) is Lebesque measurable
and that [P |/(x)I® dx < ==, where we huve altready used its
two usual special cases Lz and /.y for p= 2 and 1, respectively:
The norm (| £, of [ ix defined by

\p
WAl = [f 11(xN® d.x] (109)

Let f{x) € C* mean that f{x) is & times continuously differ-
entiable. Also f(x) € BV means that the function is of bounded
variation, which is equivalent 16 saying that £is the difference
between two monatonic functions. The following inclusion
relation may prove valuable. Fork 20,0 <g< p<se,

C-C...cchtcc*c-.-c"cl,-cL,,_CLq. 110y

As we had consideréd in Section 11-C (Theorem 11-C-1), the
nth partial sum Sy (x),
N

Snlxd= § culx) (111)
n=-N

is said to be (€, 1) Cesaro summable if the arithmetic mean

N
2 St
=0

opylx)=-

—_— 2
N (112)

converges. Hardy 't thearem states that if ¢, =o(1/n) then the
(€, 1) Cesaro summability implies canvergence. Sy(x) i guid
1o converge. (n the mean of onder p, to f(x) if

b
Jim J. ey = Syl )™ dx = 0. (113)
tl

1) Hoider Incquality. For a finite or infinite interval Tet
EELpand A€ Ly, where | Sp<oo, (1/p)+(1/p') = I, then

e '
ﬁ,m.u< Um' dx] Um" dx] (114)

154}

It is clear that when p=p'=2 this reduces to Schwarz's
inequality,

2} Parseval's Equation: Conmder the Fourier series expun-
slon for #(x) and Alx) in terms of the orthoganal functions
Wnlx) = €™ on the intorval [-n, 2] with the Foarier coeffi-
cients ¢y und d,,, respectively. The following are some relaxed
versions of the Parseval equation:

Wi<p<ooundg €L, hELy, Ip+1jp' =1,
then

"
Zc,.d,, is (C, 1) Cesaro summable to ! j gix)hix) dx.
-y

(115)

The case p=p =2 i the prototype Pameval equation used
by Brown [127). The case of Interest here, p =1 ks taken to
correspond to p' = o> and (115) is still valid. For f€ L,, the
serigy converiges absolutely and uniformly when k € €7, A very
briel proof for Brown's example of Jo(21) in (108) will make
use of the Parseval equation (115). Since ™ €L (-1, m)
and g(x)E Ly(~w, ), its sampling serics i5 (C, 1) summable
and hence convergent when we appeal to Hardy's theorem
which requites that f(r) (sin w(¢ = a))/(mls - a)) = ol1/n).
This is the case since f(n)=Jo(m) is bounded, which can be
shown by using the Holder inequality (114) on (108),

The first proof we give bere for the WKS sampling theorem
makes immediate use of the Holder incquality (114), Let
Sy(t) and Dy(x) be the partial sums of the serins expansion
for f(¢) and K¢x, 1) = ™" in (105) and (107), respectively, and
consider

a
J(e) - Sptn) =j fet* - Dp(x)| Fx) dx. (116)
-2

I we use the Holder inequality (114) we obtain

Wp
|#6r) - Syl < [_r le™ - Dytx)IP dx]
-2

3 Iy
U {Fx)? dx] Nl

Hence the series in (105) converges to f{r) when we know that
O (x) convergen in the mean of order p and F(x)ELy (-a,0).
When p =<0, which is the case, then (105) is valid when Flx) €
Ly(re;a), By employing the Parseval equation (115), we cian
find other conditions on F{x) for the WKS sampling theorem,
Also the Holder inequality may be used to relax the condition
on Flx) in (19) for the generalized sampling theorem, This of
coune depends on our close examination of the convergence,
in the mean of order p, of Dy to the particular kernel K{x, £),
These extensions and others including generalized functions
and sumphng in # dimensions for the WKS and the WKSK
sampling theorems are presented in [29].

Boas [128] presented & simple proof for the Shannon
sumpling theorem using wellkanown summation formulis. He
Hlustrated this method by using Poisson's summation formula
to dérive the sampling expansion including the case when the
Fourier transform s integrable. Also he used such expansions
to derive an estimuate for the aliasing error which results when
the ssmpling series is appticd to a function which is not band-
Limited (sce Section Vi-B).
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B. Difjerent Represcniations of the Sampling Series

As we state uny sampling theorem for a band-limited funce
tion fi1) in terms of its discrete values 1(1,), we involve two
different represeatations. The firvt one is the Integral repre-
sentation for the general band lmited signal

fle)y = J Kix. rgi(x)dx (19
7

which i our various proofs implies & series representation,
i.c., the sampling expansion

0= gun,

2

ini<N

[l )5,(0) (20)

where S,(0) = S(¢, 1,,) is the sampling function (21). The con-
vorse of the sampling theorem is to have (20) imply (19)
Theorems in both such directions and in the direction of WKS
versus WKSK sampling representations are given in [34) and
[34], | 28], respectively.

Atiother familiar and very useful representation is the con-
1our integral one, which was used in deriving VATIOUS extensions
of the sampling thearems [24], [54]. [56]. This method em-
ploys the residue theorem, to establish @ series oxpansion,
which states the following,

Theorem V-8-1° *'Any function h(z) which is meromorphic
(unalytic except st a fiaite number of points) Inade Cg for
every R, where Cy 15 a circular contour of radius R centered
at the origin, may be represented by an expangion of the form

KEE)

o 20 5}

if the intogral 1/(280) [, (MEN/E - 3) dE along Cr approaches
yero as R =22 In (] fa). Rz denotes the residue at {z/) and
¥, stands for the summation over the poles of H(E), This resi-
due theorem can be used to produce u sancty of sampling ex-
pansions. All we need to do is to let h(z) = (f(2))/(g(z)) and
choose the proper function g(r) that hus zeros at the sampling
points of f(z), This was used [24] to derive the sampling cx-
pansion (115} by letting f{2) have a finite Fourier transform
representation and g(z) = sin 2, The corresponding expansion
with the function and its first derivative (42) required glz) =
sin’ 3. The same method was used [56], [57] to derive the
sumpling expansion with N derivatives for the general band
limited integral trsnstorm (19) by letting h(x) =/()g™*'(2).
In the specific case of f{z) ana band-limited Hankel transform
associsted with the Bessel function Ju(z), the choice is h(z) =
!’(x)l!f.v"(z). Here the sampling pointasre Jo m M =1,2,7 7",
the zeros of J4(z), The cases of N=1und N =2 for sampling
with the function alone wnd the function and its first deriva-
tive are presented in (26) und (45), (46), respectively.

A somewhat novel methad for deriving the sumpling expan-
gdon of the WKSK sumpling theorem was introduced by
Haddad snd Thomas [129] then by Haddad, Yao, and Thamas
[130]. This method reprevents the sampled function f{1) in
£19) #1 a triple integral where two of iti posxible six permuta-
tions comreapond Lo the two most used methodn of derivation,
the orthogonal expansion und contour integration, The signif-
icance of this representation lies in the fuct that each of the
six possible permutations represonts an interesting physical
interpretation. The derivation of the triple mntegral representa-

(118)
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tion of

iy = 21

mi

bpe b
‘ if j [-Glx, £ 2N FEWE0(xbix, 3) db dx de
e .

(119}

sssumes f{¢) a5 o finite limit transiorm of F(x). The kernel
(=, \) of this transform is @ salution of the nth-order self-
adjoint boundary value problem and Fix)in (119)is the non-
homogeneous term of its asocisted nonhomogensous problem
with G(x, £, 2) as its Green's function [130].

¢ A Unified Approwech o the Different Aipects of the
Sampling Theorems

In this section, we will only summurize what was done in
the direction of a unified and rigorous approach 1o the sam-
pling expansion, since sach development needs mote mathe-
matical background than this review paper is intended to deal
with. Beutler [91] presented a unified approach to the ssm-
pling theorems for (wide-sense) stationary random processes
s it rests upon the concept of Hilbert space, His treatment
included, ss he had done in a more rocent paper {94], the
recovery of the procem x(1) from nonperiodic samples, or
when any finite number of the samples sre missing or deleted.
He also gave conditions for obtaining x(r) when only the past
is sampled #nd 3 criterion for restoring xfr) from 4 finite num-
ber of contecutive samples,

Yao [131] considered & numbor of cases for the WKSK
sampling theorem as It is ropresented by the band-limited
integral transforms with kernels including the Bessel, expo-
nential, sine and cosine functions, He considered such gencral
finite energy transforms as a realization of the abstract:

1) Reproducing Kernel Hilbert Space H (RKHS): Thitis a
Hilbert space of functions defined on a set T such that there
exists a unique function or kernel K(x, r) defined on the cross
product 7 X T such that K (-, VE H, for all r ET and that

x(r) = (x, K(-, r))?-fx(w}ﬂu. Hdw (120)
for all £ € T and for all x € H, The function K(w, ¢) is the
reproducing kernel of the RKHS. As one of Yao's examples,
he proved that the class of finite energy, Fourier-transformed
band-lirmited signals is a realization of the abstract REHS. He
alto made the same statement for the Hankal transform, indi-
cating the same method of proof. This is not 5o clear sinoe his
proof in the case of the Founer transform uses the convolu-
tiofi theorem which is not as feasible or ximple in the case af
Hanke! transforms [44]  [49].

We may remark here thal the reproducing kernel K, 7)is
different from K(x, f), the kemel of the integral transform
(19), but it is very much related to 8le, 7)

Ste, f)j PR (w, 7)7dr -fp’(w)p(u)mw. nkiw, ndw
/

(2n

as it represants, aside from the norm factor, the impulse re-
sponse of & time-varying system when a general integral trans-
form with symmetric kernel K(x, 1) (30)-(31) is used. Indeod

‘_#
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we have shown [36] that in this general case

— fl(‘m)
ffz(:)pms(t. T dt TKC. B (122)
and even closer to (120) we have
fiir)
d = ————
f/(no(t)ﬂl. T d? K- o (123)

where S(7, 7) is defined in (121),

Yao [131) also discussed the relevance of the RKHS for
extremum problems for general integral transforms and finally
gave an upper bound for the truncation efror (173) of tha
generalized WKSK samipling series, which we shall present in
Section VI-A.

Among other information theoretic results, Jagerman [132)
presented the approximation of band-limited functions in an
abstract setting and derived an upper bound for the truncation
error of the sampling series (sce Section VI-A),

Ax we mentioned 1 Section 1A, 1 general treatment of the
cardinal or sampling functions was presenied by McNamee,
Stenger, and Whitney [20]. They showed that the cardinal
functions provide a link between the Fourier surien and Fourier
transform, They also Unked the curdinal functions to the
contral difference in numerical analysis, A subject similar to
this is Schoenberg's work |133] in extending the cardinal
sories expansion to splines, which we will present in Section
VI,

A more abstizct gencralization of the ssmpling theorem was
established and proved by Kluvinek | 134 in terms of abstract
harmonic analysis. In this analysis, the role of the real line, in
the case of the band-limited integral, is replaced by an arbk
trary locally compact Abeliun group and the role of the sam-
ple instants (nw/a) in (105) by its discrete subgroups.

Vi. ERROR ANAL YSIS IN SAMILING REPRESENTATION

In this chapter, we will present a review of the various errors
that may arise in the practical implementation of the sampling
theorems. 'This includes the truncanion error which results
when only a finite number of samples are used instead of the
infinite samples needed for the sampling representation, the
aligzing error which is caused hy violating the hand-limitedness
of the =signal, the jitrer error which is caused by sampling at
instants different from the sampling points, the round-of]f
error, and the amplitude error which is the result of the uncer-
tainty in meesuring the amplitude of the sample values. A
comprehensive treatment of some of these errors with their
upper bounds were preésented by Thomas snd Liu [135] and
Papoulis [ 14], [110]).

As we mentioned in the Introduction, attention should be
given to the different notations used especially for the signal
representation as & truncated inverse Fourler transform [see
(1)and (124)].

A. The Truncation Eveor ond frr Bounds
Far the band-limited signal

&
1) = f e Rw) dew

-

(124)

and its WKS sampling representation

fiy= ¥ :(.)

ne—-

sin (at = aw)

e (125)

the truncation error €4 is the result of considering the partial
sum fudr) with only 2N + | terms of the infinite serjes (125),

nu\ sin (af - nw)
Er=1(n- fyl) leMv’(‘) i (126)

Unless otherwise indicated we will use &5 for all the different
truncation errory.

Tsybakov and lukoviev [136] guve the first truncstion error
bound =
(127

V2 A
170 < Y& foin 3 | w =
for =T < ¢ < Tand where A¢ < (1/W), W is the highest fre-
quency of f(1), and E is the total finite energy which is carriod

by the signal f(¢):

»
E= j | Fleai? diw. (§28)

w

Helms and Thomas [54] considered the truncation error whon
Jir) s approximated by the following finite sum

0N n\ sin (2Wnt - nm)
- ) B 0<N<= (129
L ._%;Nf(zw) Wm0 o

witha =2aWin (125}, X is an integer which is ussumed to be a
function of r such that 2Wr - (12) < &) <28 +(1)2), and
N is a fixed integer. Thus the truncation error & (1) = f{r) -
Jn(1) will approach zero as N approaches infinity provided
that f(¢) is band-limited to @ = 2aW. In their treatment they
considered a band limit +W < W with 0<r < | which, a5 we
shall see, improved the bound on the truncution error:

aM_ _ 4M
TN(l-#) ®Ng'

where M = max |f(t) forallt, g =1 - 7. Asan example, when
N=24 W= 1000 Hz, f(2) has the highest frequency ol 750,
the truncation erzor &5 of (130) Is bounded by 0,064,

A similar bound was given by Jordan [137]

4 M|sin 2 Wi
niNg '

[Eyin) £ <o (130)

875 (1310

When f(r) 15 approximated by an asymmetrical partial sum,

KaN, n sin QW - nm)
= 32
Iv,.n, 0 m-;:..\‘. ! (zw] (2Wn - nw) G0

the truncation error Ep(¢) = f(#) - [y, _u, 15 2lso shown to be
bounded as

M ! 1
l&r(ﬂ"m[ﬁ'—*‘ﬁ;]. ~m <o (133)

To obtaln an upper bound thut decreases faster with N than
that of (130), they |54] considered & “self truncating” sam-
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pling expansion
m
m!qlt'w.(‘_ &
=3 /( ) . 20
Wl KT M’.‘!(,.L.)
m W

with its Nth partial yum fy and the corresponding truncation
etror Bplr) = f(r) - fy(r). With the choice of m in (134) to
equil upproximutely the optimum value (Ngir)fe they gave a
new upper bound:

IBF(0I< 1.48M(gN - 1.78) 33279 (135)

To compare this upper bound to that in (130) they considered
the same values of the last example to find that for (135)
()l <68 X 107 M, which is 1/100 as large as the bound
of (130).

When they considered the truncation emor for the sampling
expaniion with the function and its first derivative the bound
was the same as that of &p(r) in (130), However, when they
used the same scrics with the self-truncating factor an in (134),
the bound on the fruncation error was derived as

18 () € 2AMigN - 0832y (136)

where M and @ are defined in (130) and »t in the “self-truncat.
ing serier,” of the function and its derivative, is un integer
which is sel equal to spproximately the optimum value of m =
(2Ngrm/e). For the sameé exumple of &y in (130) the error
J&7) of (136) is bounded by 8 X 10°7M, The detailed proofs
for (130), (133), (135), und (136) are presented in [54] where
contour integration was effectively and eleguntly used as 2
powetful (ool, The convolution thearem was also employed
for deriving the sampling series (134), since its self-truncating
fuctor is the mih repeated convalution of a gate function py(w)
with b = (2gW/m). Petersen |60] also presented a treatment
for the truncation error,

An upper bound on the truncation emor was given by
deFrancesco [ 138]. Razyner and Bason [13%] used the error
formula for Lagrange interpolation |25] to denve an expres
ston for the truncation error bound in terms of the sampling
rite and the Nyquint frequency for regular pampling and cen-
tral interpoiation. The ususl ercor formuls | 25] for interpolu-
tion over N samples of (1) is

N
(f) ﬂ -
o=
where g™( £) denortes the Nth denvative at some undetermingd
£ in the sample rango, t is the interpolation point, and 7, are
the arbitzary zample locstions. In terms of the total energy £
and the cutoff frequency W, they derived a4 bound ss

| f2EW\'?

&r< |N ( "") mawf‘|
for samples at regular equal intervals & in equal numbers an
cither side of the interpoiation point. [n order thar this inter-
polation converges, it is safficient to have & < (1/aW) which

reuires approximiutely & SO percent faster sampling rate than
that required by the sampling theorem with & < (1/2K). A

Eplr) = (137)

(138)
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Fig. 4. R: Ratio of Brown'y fruncation bound to Yoo snd Thomas”
bouml.

tighter bound than that of (133) was given by Yao and Thoman
[55) with [f(e)l S M forallz, 0 r<1:

o o Mlsin 2xil .tlt':l
[Bp() & = B\—"—l N-]

20 cm --

(139)

which they extended to the case of sampling signals /(ry, 15,
“ ) i m dimensions (37),

Mlsin 2aW 8] == lan 20W ey fan |

(2m™ [un %] e [co; ,":-]
) JE TR N VS I N
{Nt *N;} {N’." ' N':'}
and to sampling with the function and one derivative (42),
Moyin® awe |1 . __I_}
wsin )i (N, Nal o

When the restriction /()| < M is replaced by the condition
that f(2) has a fimite encrgy £ (128), Le,, f(1) € Ly(- =, ) and
that f(r) iv band-limited to r# Iz, the bound [ 139) would be

lsr‘f|, * 5% '~)|<

= (141)

(Br (S 2[2EW1YE luin 2aWi] { 1

-— % {142)
il - r) N, N,}

Brown | 140] used real analysis methods to obtain baunds that
have the same asymptotic behavior as that of {142) as Ny Ny~
w@ for Mw) € Ly(-nr, m7) and Flw) € L (~ar, nr). For the
first case of finite energy the ervor bound was given as

\f— o\ [ 1 1 1
&)=< =1 lsin wrlV/E tnn'— ;: 4 '\—" . m<?‘
(143
In comparing (143) to (142), note that W = (1/2) and that
(143) represents an Improvement over (142) when r s clos to

1. This is clear from the rutio ® of the uppeér bounds of (143)
and (142),

12
\/Sn(un —";'-) (1-r

vr

. uppet bound of (143)
upper bound of (H’)

and Fig 4.

(144)

Wi

L (e S ‘ L] POTERS|Im

. |

I i
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For the second case of Flw) € Ly(-mr, mr), e,

r
J: Fwldo <=, M= max 17 (145)

2M wr\'/? ,,,(tr 1 1
lar(l)l‘ - lﬁn'fl{to’('s) tan 3 E’ﬁ:

(146)
whete |t} < 3 and

l+sln-,;—

c=—In

prix (147)

- sin—o
T2

Piper [141) used real analysis methods to derive a truncation
crror bound for finite energy signals that are band-fimited to
(~ar, nr):

if3
[&pte < 3'75 [5 tan (%)] [0+ 2%%) |sin wel [V + )™

+(N-mi™' (148)

where m is the nearest integer 1o r and It} <TN. This represents
an improvement over the bound (142) of Yao and Thomm
[55] for 073 < r < 1 and that (143) af Brown [140] for all
values of 7. A tighter error bound than that of Helms and
Thomas [54] was derived by Hageniuer [142). He considered
the truncated sampling veries

L{ZADH I(n_t) din (Gagf - w)
nekin)-x, \Wo/ (wor - nm)
with Watfx - § <K(O)<wgtjn+ 4. then used a self-truncating
factor

Iy, w0 = (149)

sin (Sewar/m\®  (2n+ D
s ( bagtin | (Buwgry™ ' aoraGen); (150)

with the sampling series

- kn Am\ sin (wor - km)
(1) hz_:. !(wo) ho(t %) (t—tw) (151)
where 0 <8 <1, (20 + I =(2n % 1)(2n - IN20 - 3) - - Ch
and J,,..,, is the Bessel function of the first kind of order n1 +
(1/2). We note that this self-truncating factor is similar to that
used in (134) with § = ¢ and wy = 2W. The bound on the
truncation error & 7 = f(r) - IN._N‘ wWils given as

1 o~ _Cnk i
GaN " Sonek+1 (26=N,)F

[lg) < M(2n + l)"[

1 n Cp & i 1

+
BaN """ Son+k+1 (28an, )t

] (152)

where ¢, 2 = (R) (k + 1) /nt.
Papoulis [110] presented and proved the following bound
{or the truncation error of (126)
f(nnja)
sy 1o Gnmfe)]”

|sin gr]

1B ()< (153)
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For [r| < (Nu/a), he presented the following bound and at-
tributed it to Jugerman {143, Theorem 1.}

Istn ar| L =) fan |12

& e\ MY o>
*[w-m-a,.%:.,’ («)] w WS NEL

(154)

Luter Papbulis | 144) used some of his results to thow thar for
8 signal with finite energy £ the maximum of the truncation
error is bounded by the mean-square value of the error n{w)
resulting in approximately #/“f by 4 truncated Fourier serics,

3 _E;f : __E_f‘ wor
Erit+0)* < i In(w)? dw ), e
N

A 2
- 3 eflnwwia) H’ Ll [PRRPY
‘§~ (‘T - nw) W )

forany r. Then when we expand and use Parseval's equation,

y o o sin (a7 - nx)|?
Er(e+ ' < 'g;"[—“—w_m . (156)

In terms of the energy of such crror, £, = [ [& 1 (2)]* dr, the
bound is

25, sin® a(7 - n7) .
'S —_—
(&7(nI -—!. u%;av el (157)
For signaly with finite power
—_— 1 r "
A1 = lim -—J- G de, T==  (158)
T+= 2T Loy a

the méan square value of &7 is bounded by the maximum
Nlwyy) of In(w)| in (155):

1870 + 1) < Inteop)l? T700I1F (159)

where the average is with respect (o £, In the derivation of
(159), Papoulis commented that the sampling expansion

Jrtr)= 2.: fé'g)“ﬁn(“—")

Z ) (160)

wsed is not valid in general for finite power signals; however, he
showed that it holds in the following mean square sense

T 3
1 — sina(r - nT)
l_‘,m_-———f - —— e . .
ey -rm'”) ".Z../(HnT) g | ar=0

=2 (161)
a

where LiLm. stands for “'limit it the mean." He then remurked
that such rexults [ 144) can be extended to stochastic processes
by formally replacing time averages by expected values [69],
[91]. He alto extended similar results to two dimensions and
Hankel transforms and then related such resulls to the uncer-
tainty principle in one and two dimensions [ 145].
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Mendelovicz and Sherman [146] used a generalivation of
Papoulis’s approach [145] to give a least upper bound (Lu.b.)
on the truncation error for energy boundad band-limited func-
tions. This was done for the WKS sumpling expansion (125)
and the self-truncating series (134). They also trestéd the
problem of finding sn optimum sumpling function that mini-
wizes the truncation error. These results compared very
favombly with those of Yao and Thomas [55] and Brown
[140] especially when wampling above the Nyguist rate, They
concluded that a few percent overmampling gives a significant
improvement in error performance. In comparison with the
cardinul series which converges slowly but s best at the
Nyquist rute, they suggested other series for over sumpling that
may converge faster, Later Mendelovicz, Sherman, and
Murphy [147] presented s more detailed treatment where
they consitlered both stochastic and deterministic signals.

Jugerman [143] presented virious estimates for the truncs-
tion error under some approprite constraints on the signal

0]

fin = v,;—" f "I Rw) dw. (162)
-2

The estimate in (154) is one of his first theorems for f(r) €
Li(-=, ). A corollary to this theorem is the special case
when lt| £ 7/2a

L2 E) g

[&p(e) = = W -
(163)

With the different condition t*f(t) € Ly(-=, =), k positive
integer, N2 |, he gave the following estimate

.Isinﬂllb'g ! | 1
<
Er(n) = ] - ek [\/Nh- ! % \/Nhﬂ](lvﬂ)"'

<2 Gion

v |-

where b= (n/a) and

12
Eeg= U— ﬂ*;mn’m] (165)

An immediate consequence of (164) is the special case for
Irl £ (%/20):
2 |sinazl By 1
< = ok,
b= § VI- 4% pENE (v AN 2

T

Jl < 3, (166)

For the truncation crror &5(1) (135) of the Helms-Thomas

“self truncating series™ (134) (with ¢ = 20W) the estimate for
Il £ (w/2a) 55

e 25 mis- Gy} < T
[Br(0< <o) . InE e (167
where 0 <y <1, u=(ag/e) W-(12), NZ 1, m=[v]l +1;

{(x) has radian band width (1 - g)a and § = Lub e
finmja). Here (0] is the integral part of ¥, e, it is the unique
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integer satisfying v - | < [#] = ». Jagerman [143] also gave
un estimate of the truncation error in terms of the l.u.b, of
the sampling series error

km\ mn {ar - kx)
.L .b_ — ——— 68
o ISN EI,(I) (at - kw) (168)
A\ sin (or + ko)
w %é: nz>:1 ,( a ) (et + k) a5

His estimate for 0 < g < L, v =(ag/e)}(N+ (12 N2 I, m=
slvl +2, IS (7/22), and f(x) having radisn bandwidth (1 -
Ja is

B 7)) £ (e + 2)(gn + sy)e™™C-GM) -y < -2-:— (170)

Other estimates including when the conditions of both ( 164)
and (170) are mel were slio presented,

The most recent treatmont of the truncation error, for deter-
ministic functions as well as widesense stationary processes,
was prosesited by Beutler [148]. In contrast to other methods,
his method depends on the use of the Dirichlet kernel repre-
sentition for the truncated series and on properties of func-
tions of bounded variation. Other integral kernels were also
employed, It is known that the truncated series for functions
f(t) with sbsolutely integrable Fourier transform is towly
convergent [141). As we indicated earlier, bounds for such
functions were found [55], [140), {143] provided that there
is a gunrd band §, Le, provided that the Fourler tramsform
Flw) of f{1) is supported on [-7m + 5, 7w - 8). Beutler | 145])
showed that a similar upper bound can be obtained without
the guard requirement which he repluced by requiring that the
Fourier transform of 7(t) be of bounded variation in the
neighborhood of —w and m,

1} Truncation Error for the Generalized WKSW Sampling
Expansion: As we mentioned in Section V-C, Yao (131] was
the first to give an upper bound for the truncation error of the
genoralized WKSK sampling expansion. He considered this
and other expansions ss 8 realization of his abstract RKHS of
functions [(¢) and the feproducing kernel X(s, 1) defined on a
set T (see Section V-C),

=3 fty)¥alt. 1), (171)
nsl

Here Uplt, 15) is a ssmpling function where (1, 1) = 5, and
tho series (171) is uniformly convergent for all € T, He con-
sidered the partial sum fo(7) of (171) with a finite number of
terms I”, a8 a proper subset of 7, and showed that the trunca-
tion error

By =£0 - fo)= T fltWalt.tn)  (172)

neEW-7%)
is bounded as

13
mrmlé[t:- 2 c.’.!*(r.)] [ P
ne

12
ca ki, r,,)] X
nel’ -1y

JEH" (173)

for any /&N where H™ = {f€ 17|} £ £}, L., finite en-
ergy signals. Here the constants ¢, are defined as ¢, /(1) =
(/. $u). nE1, where fy is an element of smallest nom
satisfying

(fo.0n)=by, nEl (174)
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(e, n €L} are fixed constants, {¢n, n 7} is = complete
orthonormal set for the Hinite encagy functions, and § (1, 7n) =
cxuPult, 1) = cA K1, 1,). In the case of the Shannon (WKS)
samphing expansion,

sin w(r - »)
w(t - n)

fin= 3 fn)
-
he considered only 7' = {ng(1) - ¥ < n < ng(r) + N} terms
where ny(r) is the nearest integer to ¢ and M and N are positive
integers. The truncation error is

(174)

A (reNer,= sin wir - n)
Erin= =0 U
.-»-z.u:w)-u-l wiL=m)

and the upper bound was given for finite energy functions f as

B¢ |1 2 |ue 1
ol -_-+ 2N' ‘I . 'E(RQ(‘)t Rﬁ(f)"—z‘
S | [ T | ——
v |Zs-17 N v tE Ml
(176)
where
mt}e N+ -
Eo= Fn)<E <, (177)

ne-w= (1) M-

The limits of the summations (175) and (177) are those of
-1,

2} Truncation Error for Band-Limited Distributions (Gener
alized FPunctions: Campbell (105) established a bound for the
truncation error

N nw\ =in (£ - nx)
& (0 =it ._z;,v!(ﬂ) s Siqleu - nx])
(178)

for the mampling expansion (78) of band-limited generalized
functions (distributions). For [, £, §, q. 11 as in Theorem
IVG-1, let 7 be an integer and b a number such that | F(0)] =
diel” for fel > (Nx/€2). Alsa let 1 br an integor greater than r
and et

=409V (- NP e Yk (179)

where

1
r'~f exp (x¥ = 1)"" drx. {180)

Lei 0 = |fu| < Nx. Then the estimate for the bound of the
truncation error &7 (r) of (178) is

cylnin S| .v.)'
¢/ iV = 1524y (n '

8. The Allaring Errar and {12 Bounds

In practice, the signald that we deal with are not necessarily
band-limited in the sonse required by the Shannon sumpling
expansion. The aliasing error & ((¢) = f(2) - £,(¢) i the result
from applying the sampling theorom representation 7,{r) to
signals (1) with samples finn/a) even when they are not bangd-
limited or band-limited to different limits than those used in

B S (181)

a7

sampling expanuion, In this section we will present estimates
for the alisgsing crror for band-limited bandpass functions
and for the generalized WKSK sumpling theorermn.

In their review paper for error prablems in sampling repre-
sentation, Thomas, and Liv [I35] showed that the meas-
square alissing error is equal to twice the spectral power out-
side the Nyquist renge (W > 2aW;

0”(«:) dw

El(f-10" = -,';f (182)

l2)> W
where £ stands for expectation value and ®7 s the power
spectral demsity of /(7). However when an optimum prefilter
is used then the mean<quare sliusing error is reduced to one.
hall of the error without prefiltering (182). In the deviation
of (182), the sample for [,(1) was taken at (a/2W) - a whare
@ is uniformly distributed in the interve! {0, (172W)). The
phase averaging process remulted in a widesense stationasry pro-
cess. Brown [149] considered the samples at (n/2W) and
showed that the meansguare error is less than or equal to
twice that of (182). He also added thut his result cannot be
improved without sdditional processing such 15 the sbove ran-
dom phase sveraging or prefiltering. [t Is clear that unless the
signyl is band-limited to (<20, IW) there will always be an
alissing error when we sample at the required Nyquist rate, So
if there i any alivs free sampling it must be based on # rute
different from that of the Nyquist rate or in other words
sumpling at unequully spaced instants of time. To develop an
alias free sampling, Shapiro and Silverman [150] found condi-
tions on the sampling instants, They showed that various
schemes with randomly chosen sampling Instants satisfy these
conditions, This problem was later treated by Beutler [151]).
Weiss [152) considersd the aliasing error resulting from
applying the sampling thearem to a function even when it is
not bdnd-limited, ie., when Fw) does differ from zero for
lwl >a. For Filw) € L (-, =) F(w) = F{~w), of bounded
variation and 2F(w)=Flw+0)+F(w - 0), iet f,(r) be the
sampling series (125) with samples f(am/a) of the nonband-
limited function f(7). Weiss gave an upper bound for the
alinsing error as

|84(')I"|ﬂl)'!.(l)l§%j—lﬂw)ldw. (183)
a

Papoulis [110] derived an upper bound for the allasing error
in terms of the area of the spectium £ 4 (w) of such an error

B= J_ IE g{w)| dw

(8.4 < 3 fsin ]

(184)

(183)

where the upper bound can be attained, Brown [153) showed
that the first of the four Weiss conditions, L.e., FW)E L, (-,
=), is sufficlent for the validity of (183) with the estimate as

I&,(r)l=ll(t)-f,(r)l=-:- 'f IF(uw) dw.  (186)

>

As we have indicated in Section V-A, Boas |128)] used the
Poisson summation formula to derive the sampling expansion
and the above two estimates of Weiss [152) and Brown [153]
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for the aliasing error. Brown then considered the same aliasing
error for the sampling expansion of bandpass functions (63)
[12, p. 216], where again F{w) does not necessarily vanish
outside the bandpass interval Jyp an in (63). The bound on
this eyror is

|Flw)l dw
#1gp

where £, is the smampling series (63) with samples of f(r). He
cancluded and proved [153], [154] that the constant multi-
ple in (186) and (187) cannot be reduced further and so the
crude estimate (187) is a very good estimate of alissing crror
for almost all values of 1 except those for which ¢ is 2 sampling
point of the form (sw/s¢). Standish [155] showed that a
bound of the form

If()- () <2 L (187)

1& 4 ()] <umf IRl dw, ~=< <o (188)

lwi>a

with a(r) independent of 7 und bounded canner hold far all
signals of finite enesgy (Flw) € Ly(-02, 0%)). Stickler [ 156]
reportad the same bound as Weiss (183) without reference to
Weiss’s result and then derived a tighter but cumbersome
bound

2 Al
B4l <~ f lﬂw)lsin%‘-uw (189)
-8
where
0, |wl<a
Mw) = -
20h [’MT!] wn w, |w| >a (190)
= _[1 x>0
hix) = smallest integer & | x| and sgn x {-l, <.

Then he gave a bound for the aliasing error when f{(2) is band-
limited but with a larger band wy thana, Le,, Wy > a!

2
()] € = (w3~ 9
& ()< > (wy - a) “tl,:x“.lﬂw)l (1en
which he compared to that given by Papoulis (185)
| lmnar| » o
184N < R 1B (w)l dw (183)
) - -

with the comment that (189) or (191) is more useful than
{185) for same cases,

The alinsing error bounds (183) and (187) were extended
by Mehia [157] to the cast of the generalized WKSK sampling
theorem for its deviation from “the generalized”™ band-limited

and bandpass functicns, respectively,

18 4(0)) < 2cx .[N‘ | Flw)| dw
)

184D <2a L |F{w)| dew
Rar

(192)

(193)

whore / is the interval on which {K{w, #,,3} are urthogonal, as
in (19). Rpp is the bandpass region as in (65). Mehta took
a = |K(w, 1) for all real w but it would be more practical to
take & = max | K{(w, 1), which does not affect his derivation.
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C. The Jitter, Round-Off, and Qther Errors

The amplitude error is caused by the uncertainty in the sam-
ple values due to either guantization or to some fluctuation
where the round-off error may be considored as a special case.

The jitter error resulty from sampling st instants ¢, =n7 +
T» Which differ in a random fashion by 7, from the required
Nyquist sampling instants 7. As it turned out [135] the
jitter and amplitude orrors are reluted and roquire very similar
theéoretical treatments, Thomas and Liv | 135] gave & thorough
review of both subjects with a summary af the ariginal work
by Franklin [158], Lloyd and MacMillan [159], Stewart
[ 160]), Spilker [161], Chang | 162]), Brown [163], Middleton
and Petersen |164], and Ruchkin [165], on the amplitude
error, and by Shapiro and Silverman [150], Balakrishnan [69],
{1661, Brown [167], and Brown and Palermo [168] on the
jitter problem, Middleton [12, ch. 4] treated various sam-
pling procedures including the “jittered” samples, Pspoulis
[110) also gave a simple treatment of the jitter and the
round-aff error where he utilized some extensions of the
sampling theorem which we presented in Section IV-L In
this scction, we will present the bounds of both errors that
were developed by Papoulis and refer the reader to the above
references und in particulur [135].

In his study of the ¢rror unalyuis for the sampling theorem
Papoulis [ 110] spplied (94)

sin woll - aT)

wylt - nT) 54)

£ii= z a7
nn=-
whare wy = (#/7) and wy » 2w, (instead of wy 2 wy in the
case for f(1)) and wy is such that 2w, & we < 2w; — 2wy, to
the round-off error

€y = fnT) - f(nT) (194)

where finT) is the recarded or tabulated sampled values which
differ from the exact sampled values by €,. Using the cardinal
series (92) with wy = wy and sampled values f(nT) be con-
structed the function f,(7), which differs from f{r) by the
total round-off error &,(t). Combined with the above results
in (94) he showed that this error &,(7) is bounded by its own
total energy £, ; that is,

1/3
TROL (""TE') (195)
E,= f &ty ar. (196)

Papoulis then considered the jitter problem, which arises
when the sample values are not exactly at the sampling
points T but are §t some other instants aT - u,, where {u,}
i% the s8t of deviations of the sampling points from a7. He
considered

oo sin wy(r - nT)
O(ry= 3. uy i~ 4T)

(197)

to be band-limited, using (93). Higgina [169] prosented two
serier Teprosentations for en errot free reconstruction of a
band-limited finite energy signal from its irregularly spaced or
“ittered" samples. The basic theorotical treutment for this
problem was developed by Beutler [91], [94].

Knab and Schwartz [170] considered the truncation orror
&7 combined with channel error &, which is caused by uncar-
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related noise samples. Let the band-limited signal f(r), with
hand limit wy, bounded by M and with a Fourler transform of
bounded variation be corrupted wilh zero-mean additive nomse
samples €4 of varianco 07 that are uncorrelsted. They used a
truncated sampling series to approximate f(r) in the interval
el < (7/2) as f(1):

fin= f_" FkT)0(r - kT)
k=~N

where 0(r) is a “self-truncating” sampling function asin (134)
with ¢ = 1 - 5 and & = wg. The reconstruction mean-square
error B[&(0)]% i found as

(198)

N
EIR = EI& A0 + [87(N) =0 3 07(¢- kT)
k=N

+ &), (199)

The error bound for such combined errorn was found for all
IST/2as

70 w3 [sinwe) 4 M|
El&GGN <M ( T ) = [“MJ

)y Lg comsel), o 20 2n
+0 [{l 35m }{l cos T t}fcm T t] (200)

where m is as in (134),

Knab [171] derived an error bound using Lagrange poly-
nomisls for interpolation and extrapolation of finite power
banddimited signals, He compared this bound to that derived
by Helms and Thomas [54) for the self-truncating ssmpling
series (134), He also noted that extrapolstion is possible with
his series while it s not the case with (134). However, the
Lagrange extrapolstion method i not numerically stable as
the channel error becomes large very fast with &, the number
of terms in the series.

Ericson [172] presented the sampling series for signals
which are not necessarily band-limited and where the amples
are subject to distostion before being used for signal recon-
struction. He considered @ stationary time-continuous process
x (1) whose spectral density (which is assumed to be integrable)
is zero outside a more general frequency set than the band-
limit interval.

D. Conditions for a Stable Sampling Expansion

As it is the case of the solutions of many probloms in upplied
mathematics, we always scck a stable solution in the sonse (of
Hadamard) that a small error in the input produces & cor-
respondingly small error in the output or in other words the
output depends continuously on the input. Yao and Thomas
193] considered the stability of the sampling expansion in the
sonse that 8 small ervor in reading the sample values produces
only a comespomdingly small ervor in the recovered signal.
They gave a condition for a stable sampling that “for 2 band-
limited function g{(¢) to pomsess a stable sampling expansion
with respect to a class of sampling sioquence (7, ) there must
exist # positive finite absolute constant ¢ (C is independent of
flryand {1, } ), such that

f WP dessC 11" J201)

For an example of an unstable sample expansion, they con-
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sidered the simple constructed function f{(f) =0 with uncor-
rupted samples (f(#)=0,n=1,2, - +}. Whon these sample
values f{n) were corrupted by the specific noive samples hin)
of

b sin [(w - €)(b + 1))
wib+1¢)

they became {f(n)+Aa{(n)=h{n)}. For this noise (202) it is
cany to show that

f lk(',l’ d1 .JE(+_¢)

-

which becomes unbounded as the arbitrary & approaches
infinity which makes xoch sumpling unstable.

Landau [173) considered the WKS sampling theorem and
used the Parseval squation (102) on (4) whersby

3
w3y 2 () - ore
(204)

and gave the following interesting interpretation as it relates
the Nyquist rate with the stability of the sumpling expansion.

1) Every signal f(¢) of finito enorgy, ie., [T 2 (1) dt <=,
and bandwidth W(Hz) may be completely recovered in a
simple way, from the knowledge of its samplen taken ut the
Nyquist rate of 2W per second. Momaver, the recovery is
stable, in the sense of Yao and Thotmas (or Hadamard), such
thot a wmall error in reading sample values produces only a
correspondingly amall error in the recovered signal.

2) Every sguaresummable sequence of numbers may be
trangmitted al the rate of 2W per second over an idesl channel
of bandwidth W(Hz) by being represented as the samples of an
casily constructed band-limited signal of finite energy.

In relation to the required Nyquist rate for the transmitted
sequence of samples or the recovered ones, Landau considered
other configurations, besides the band-limited finite energy
signals, in the hope of improving such rates. This included
moving to differently chosen sampling instants or to bandpass
or multiband (rather than band-limited) signals. Emphasizing
that only steble sampling i meaningful in practice, he proved
the following two very sharp and useful results,

1) Stable sampling cannot be performed at a lower rate than
the Nyquist rate.

1) Data cannot be transmitted as samples at & rate higher
than the Nyquist rate regardless of the location of sampling
instants, the nature of the set of frequencies which the nignal
occupy, or the method of construction.

These results alto apply to bounded signaly besides finite

energy signals.

VIL. OTHER APPLICATIONS OF THE SAMPLING THEOREMS

In this chapter we will discuss a number of applications of
the WKS and the generalized WKSK sampling theorems in
other fields besides the usuul communications theory. The
Iatter applications of the ssmpling theorems are found in most
texts [11]1-[17), research papers in information theory, and,
in particular [13), [14].

A. Optics and Cryatallography

Barakat [ 174] presented a direct application of the sampling
theorem to optical diffraction theory as 3 computational tool

hir)= b>0 (202)

(203)
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and credited Gabor (175] and others for pioneering the intro-
duction of the sampling theoremn concept in optics.  He
developed formulas, in terms of sampled values of the point
spread function for the transform function, total illuminance,
line spread function, and cumulative line spread function,
Then he presented a theory for gencral point spread functions
for alit and square aperture, where the WKS sampling theorems
n one and two dimensions are used, respectively. For circular
apertnses with rotationally symmetric point spread functions,
the one-dimensional generalized WKSK sampling thearom,
associated with the J, -Bessel function, was vsed instend of the
two-dimetisional WKS sampling theorem. This, of courve, is an
advantuge of the generalized WKSK, us we pointed out in Sece
tion II-B, in gencral, with circulsr symmetsy, 8 Jemzy. -
Hankel tzansform is eguivalent to yn m-dimendional Fourier
transform [sec (29)].

As an example, the transfar function 7'(w) and the point
spread function #{v) for a slit aperture are relsted by a band-
limited Fourier transform

2
el =3 ( Tiwde ™™ dw (205)

where the factor (1/2) enters in order that 1(0) be unity for a
perfoct gystem. Using the WKS sumpling theorem, the poini
spread function 7(¢) can be written o terms of #1s discrele
moeasured vahics 1(rw/2) as

> na\ sin (2v - am)
o= ¥ I(Tz‘) —(':———-——“_ e

(200)

Som [176] used the two-dimengional WKS sampling theorem
in the frequency domain for a coherent optical processor to
abtain multiple reproduction of spaced-limited functions in
two dimenstons. This approach was backed by an experiment
whtere it was found that the relutive separation and the relative
brightness of the multiple reproductions of a given input func-
tion can be quantitatively controlled by simply choosing an
appropriate sampling function.

An earty application of the sumpling theorem in opticis is
due to diFrancis [177) where he used the WKS spmpling
expansion o compute the number of degroes of freedom of un
image. Mo then exlended the anzlywis to anfomna thoory
[178]. Gon and Guattari [179]={181) used nonuniform
wsmipling in the unalysis of holographic restoration and optical
processing.  Various wpplications of the sampling thoorem in
optics were made by Lohmunn [182]. Another related appli-
cation in the ginersl feld of Foutier spectroscopy is due to
Vanasse sol Sukal | 183].

Hopper [184] utilized the N-dimentional sampling theorem
for wavenumberlimited functions with examples of the two-
dimensional case for coherent optical systems. In particular,
in the case of comiputer generation snd construction of holo-
grams, sampling must be done in space and, hénce, it i of ad-
vantage to use the most efficient sampling In two dimensions
a5 presented by Peteérsen and Middleton [61] snd Miakawd
{59]. Instead of the two-dimensional sampling in Cartesian
coordinates (x, 5), Blafek [185], [186] considered the
mmpling theorem in polir coordimates (p. ) to find the
number of spatial degrees of freedom of optical wave fields at
the output of optical systems with circular symmetric aper-
tures of varions shapes. The difference between this sanfhling
and that of the WKS sampling is that the formoer is based on
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sampling circles instead of sampling potats.  Thic imphies that
an integration of 3 function over a given circle 15 used imstzad
of the value of the function &t & given point. We may remark
that such poliar coordinate mampling is a combination of the
WKS mmpling in 6 with exponential kernel and the WKSK
sampling in o with kernel as Bessel function, Blatek men-
tioned as an example a rediotelescope with circular symmetric
transfer function. This makes uso of the sampling theorem as
A tool to solve system enalynis probiems from the point of
view of transmission of pictorial infarmation.

Marks, Walkup, and Haxler [187) developed a sampling
cxpansion which is applicable to the class ‘of linear space-
variant systema characterited by sufficiontly. slowly varying
linespread functions. They showed that the dedired sampling
rute is determined by both the system and the input und that
the corresponding output i band-limited. McDonnell [188]
introduced the “linedegmentdimited” function for image
restoration whoere the emphusis s on the samples themselves
snd the continuously restored image obtained by the usual
wmpling expansion, This is in contrast with the uwsal
sampling series where these samples are convolved with the
sampling funttion to reconstruct the restored image, In
wvoiding the usual sampling function, he showed that sampling
can be performed at a rate lower than the Nyquist rate. These
restlls were extended to twa dimensions.

{) Crystellography  Brillouin 1189, p. 108] presented the
WKS samipling series and Fourier methods lor analyzing pe-
nodic crystal structures.  He considered the slectron density
F(7) us periodic in the throe dimensions with the correspond-

ing translations d,., 7. and d;
FG 4 pydy +p3dy +pada) = FI7) (207)

where 7 s the vector (¥, xs, X3): 0y, 03, and py are positive or
negative integors. The Fourier series for FF(F) is

F'(x‘,xz.x)).z: Z zc"l"l.i

h by by

- g Imilh o X, vhypox, vhybE)) (208)

L e
Ch,n,b."‘,; Ry /) Fixy, 2z, x3)

I BT, A R gy dxg dxs  (209)

whete Vy = 1/ baby, the volume of the fundsmental Jattice,
Brillouin then turned to the Fourier series of the attodorrela-
tion of F(7) or what is called the Fyzrerson funceion [189),

Y e
o"(unuz.u;)=y—d f j Flxy +uy, x3
o L n

+Uuz, 5y ‘Pu,)F(IhI’.J.’dl‘. dxy dxy (210)
whase Fourier coefficients are the intensities
1Coireymy 1* = i n, T, myn,
and

Playouzusd= 3 3 3 1Chnn, 13
By 0y

e L R e L LA P TR )

This Is a Fourier series analysis wherehy the sutocorrelation of
the electron density is determined in terms of the measured
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samples of the intensity 1Cy,a.a,17 where we don’t seem 1o
find the explicit use of the sampling theorem except in Hril-
louin's other information theoretic discussions. To apply the
sampling theorsm it is tempting lo recognize the intensty as
the square of a band-limited function in thiee dimensions
{209) where an extension of Papoulis’s | 14] sampling expan-
sion (94) for /2 (¢) to three dimensions may be used to inter-
polate the discrete values of the intensity |Ca,n,n,l*. Since
(hy,hy.hy) determines the direction in which the intensity is
measured, it seems possible, for some physical reasons, that
measurements cannot bo dono at some angles and, heace, there
is @ gap or nonuniform samples which can be treated by the
methods of Section [V-D.

Some reluted applications of the ssmpling theorems were
made by Frank [190) then Frank and Ali [191] in the area
of mdiation dumage caused by the clectrons used for imaging
in the electron microscope. Earlier, Frank [192] pressnted
a detsiled roview for computer processing of electron

micrographs.

B. Time-Varying Systems, Soundary Value Problems, and
Discrete Fourier and Other Transforms

1} Time-Varying Systems. The Shannon sampling theorem
with its band-limited Fourier transform and the simple con-
volution translation is a natural tool for the analyais of time-
invarying systems. Timevarying systems are also analyzed
using Fourier transform as evident in the work of Zadeh [39]
and othem, however, we emphamze hore a time-varying system
with & generalized convolution trandation [36] which is
associnted with the generalized integral transforms of the
WKSK sumpling theorem. In Section I1I-C we attempted to
give an applied interpretation of this gencralized WKSK
theorem in terms of a Lime-vitrying impulie response. In Sec-
tion IV-H we digcussed the WKS sampling theorem, viing the
Fourier transform, but with timevarying bands [109].
Stastey [193] considered the reconstruction of timevarying
signals with particular emphasis on the distortion which srises
during such restomtion. He employed the sampling expansion
for bandpass functions xnd denved a Uependence of the distor-
tion on the sampling frequency which is valid for stationary
Gaussian random signals and for deterministic signals with
continuous spectrum having & low frequency character. In
Section 1T1-D we discussed the possibility of replacing the m-
dimensional Fourler transform of functions with circular sym-
metry by a one-dimensional fi,y,3)- ) -Hankel transform where
the WKSK sampling theorem can be used. This may relate to
spatialvarying problems where, in the caye of polar coordi-
nates, the sampling is done on circles instead of at points,

2} Boundary Value Problems: In Section II-D we discussed
how the gencrulized WKSK sampling theorem was used [42)
to facilitate the study of the effect of the axial heat conduc-
tion on the temperatore Hield for s fluid with laminar flow in
a tube. This developmant can still be extended to prohlems
which require matching boundary conditions and uses general
orthogonal expansion. For example, m the case of & sphenical
geamelry, associated Legendre polynomials ar spherical Bessal
function expuntions may be used. In the simple cuse of
luminysr fMlow beétween plates, the Curtisinn coordinutes are usod
and, hence, a [linite Fourier transform and ity Shannon's
sampling theorem may be employed.

3) Discrete Fouriér and Other Transforms: The role of the
WKS szmpling theorem is very evident [45], [46] dn detor-
mining the required spacing of the discrete Fourier transform
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which led to the powerful tool of the fast Fourier trandarm
(FFT) algorithm, Petersen [194] employed the WKS sampling
theotem (S3) for the discrete transform and FET for N-
dimensional lattices, As we mentioned in Sectign [11-D, it
is In this direction that we have sttempted to employ the
generalizod WKSK sampling theorem for determining the
spacing of generml discrete traniforms associated with clamsical
orthogonal polynomials [43) and the Bessel functions [44].

C. The Sampling Series and the Hill Functions (B-Splines)

As we have briefly indicated in Section VI-A, the hill func-
tion Pp . (@R + 1), w) of order R + | is defined an the Rth-
fold Fourier convolution of the gate function p,(w) =d, (e,
w). Hence, it iy the Fourier transform of [(2 ain ar)/()] R + 1
which can be recognized us related to the sampling function
for sampling with R derivatives (43) ar the factor for the self-
truncating series (134) which improved the error bound for
the truncation error (135), This function was also wied [195]
a8 u self-truncating Fourler coefficient for efficient evaluation
of the hill function of higher order

1 5-_': [2sin (nm))(R + n]lm
(nm)/{a(R + 1))

¢ (w)='-'2+
e 2 R+ =

nw
IR+

where ag = ((20Y°" ' )/(@(R + 1)) = 2a Fpoy and Fg., is the
average value of x4 1 () over the interval [-a(R + 1), a(R +
1). In {212) we note the simple form of the coefficients and
their advantage in making the series a self-truncating one for
large R. A very thorough treatment of the sampling expansion
{curdinal interpoiation) and spline fungtions is given by
Schoenberg [133]. The above disgustion is exclusive for the
WKS pampling theorem and its very familiar tool the Fourier
transform. As of yel no mention is made of some “valunble
function™ fike the spline function which can be defined as the
Rih-fold general transform convolution |36] and which may
play the role of improving the error bound for the (runcation
error of the generalized WKSK sumpling theorom.

~gR+ D<w<aR+1) (212)

D. Special Funcitons

The subject of this section is varied as we can see that the
generalized WKSK sampling theorem is an extenslon of the
simple oxponential function, as the kernel of Fourier trans-
form, to other (unctions; as solutions of »th-order self-adjoint
differential equations, for the kernel of more general integral
transforms.  In Section [II-B we have already shown the con-
ditions for the equivalence between the Fourier and other
transforms and, hence, the two sampling theorems. In par-
ticular, it is known that the sampling functions {(sin {at - n®))/
{at = nm)} which are band-imited to (-a,a) are orthoganal on
(==, %) and we have shown [36] that the genoralized sampling
functions {§{¢, 1,)] of (£1) are also orthogonal on the interval
used for the integral transform inverse (31). This shows that
the geperal Fourertype transforms (310), (31) preserve orthog-
onality since (K(x, ,)} in (21) is an arthogonal sot und so is
Its transform {S(1,¢,)}. Some of the following results
relating band-limited functions to the transform of some
special functions are closdly related to the above trentments

Yao and Thomus [196] noted that (sin ¢)/(r) is a band-
limited function of the gate function p,(w) which is a poly-
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womial of order zero on (<1, 1). This is the mame {or the pro-
late spheraidal functions [27], which are also band-limited and
have been used extensively for approximating band-limited
signaly. They showed that s more general frequency function,
instead of the gate function, band-limited to (-1, 1) can be
obtained by orthogonalizing the polynomialy |, w, w
with respect to the weighting function p(w) using the Gram-
Schmidt process. Such functions are the weighted Jacobi
polynomials ‘which are complete in L3(-1, 1) and are slio
solutions of second-order seif-sdjoint differentisl equations
[27]. The time functions as the inverse Fourier transform of
these functions sre well-known special functions which are
also orthogonal [26] on (-o=, =), Some of the special cases
that they exhibited sre the Gegenbauer, the Logendre, und the
Tchebyschev polynomials. Mehta [197] considered the same
problem for other examples like the associsted Legendre
polynomials and the prolate spheroidal functions

One of the simplest spplications of the WKS sampling
theorem is in establishing a relatiop between the continuous
special function and its discrete or sample values, For ex-
ample, from Titchmarsh [ 198, p. 186] we have the following
banddimited function representation for & certain combination

of gamma functions of x
B (x]3)
#le - 1) cf lcosu]¥ "% o ¥% gy,

~(=13)

2°?P(a + x)2)T e - x)/2)

221, (213)
We recognize that this is a band-limited function of x, for
which we can immediately write the Shannon sampling series
= 1

!
Tl +x )20 (e - x)/2) ,,.z.- I'((a + 21)/2)T((t - 2n)/2)

sin ({(7/ 2k - nm)
((5/2)x - nx)
a result which apparently Is not casily sccessible in the liter-
ature. Setting ¢ =2 in (214) leuds to the well-known special
cuse

v a>1 (214)

I _sin(m/2)x
Cix/2)0(1 - (x/2)) lt —

which is the finite limit Founier transform of the gate function
Pers2(r) a8 in (213) with s = 2.

In paralle! to the WKS sampling theorem or the Whittaker
cardinal series [1), [§], Higgins [199] considersd an inter-
polstory series associated with the WKSK sampling theorem
{91 and in particular the one associated with the Hanke!
(Bessel) transform. He proved s number of theorems that
included basic properties of the WKSK sampling functions
(36). Then he utilized particular cases of his results for
special functions expansion which is in parailel to the sbove
expansion (214) of the gamma functions as a WKS sampling
series,

E. Other Applicarions

Among other applications of the Shannon sampling theorem,
Petersen and Middleton utilized the multidimensional sampling
theorem [§3], [61] for the analysis of meteorological data
[200]. Also this sampling expansion [S53), [61) was referred
to by Belyayev [201] for occanographic applications. Rad-
zyner [202] employed the nonuniform sampling expansion
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and developed error bounds resulting from the simplification
of a mathematical model for the cardiac pacemaker.

A seemingly far removed application i that of sampling tho
fractional derivative (@ )dr™) f(r)x (e} (Leibnitz rule—a not
necessanly un integer) {2031 of the product of two functions
flr)g(r) in terms of its samples, the usuval nth derivatives
@™)/@r™) f(r)g(r). We remark here thut such ssmpling may
uiso be attompted for the fractional integrals [204].
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